Bus Facility Capacity

May 2, 2006

Today's Topics
- Types of bus facilities
- Bus facility capacity
- Person capacity

Review: Major Bus Stop Capacity Factors
- Dwell time
- Variability of dwell times among buses using stop
- Delay re-entering street after serving passengers
 - "Clearance time"
- Can a bus enter a stop as soon as it arrives?
 - "Failure rate"
- Traffic signal timing
- Number of loading areas per stop

Review: Bus Capacity Process
- Capacity of a single loading area (bus berth)
- Capacity of a bus stop
 - Provides one or more loading areas
- Facility capacity
 - Determined by the capacity of the "critical" bus stop along the facility— the stop with the lowest capacity
 - Generally the stop with the longest average dwell time

Review: Planning & Operations Methods

Loading Area Vehicle Capacity
% of hour when buses are able to enter/leave the stop

Time an average bus occupies the loading area, plus an allowance for unusually long dwells
Loading Area Vehicle Capacity

- Seconds of green per hour
- Clearance time
- Portion of dwell time during green
- Allowance for dwell time variability

Dwell Time

- Time required to serve passengers, plus door opening & closing time
- TCQSM recommends field measurements, but also provides default values and passenger service times

<table>
<thead>
<tr>
<th>Measure</th>
<th>Downtown</th>
<th>CBD</th>
<th>Elsewhere</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service time</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Start up exit</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
</tbody>
</table>

Dwell Time Variability

- Used in developing "operating margin"—a dwell time that won’t be exceeded more than a desired percentage of the time
- Dwell time variability is measured by the coefficient of variation of dwell times (c_v)
 - Standard deviation of dwell time / average dwell time

Bus Stop Failure Rate

- Measured by Z
 - Statistical value representing the area under one tail of a normal distribution curve

Clearance Time

- Dead time for a bus stop — the time for one bus to start up and clear the stop and the next bus to enter
- Start up and exit time = 10 seconds
- For "off-line" stops (out of traffic flow), add re-entry delay
 - Depends on curb-lane volumes
 - Depends on yield-to-bus laws and motorist compliance
 - Nearby signals will affect

Bus Stop Failure Rate Values

- Average dwell time * Z * c_v equals added dwell time that will not be exceeded more than x% of the time
- For design, use 7.5-15% (CBDs), 2.5-7.5% (elsewhere)
- For maximum capacity, use 25%
Re-Entry Delay Values

- Assumes random traffic arrivals on street
- At signals, estimate time for queue to clear instead

Effective Loading Areas

- Each additional linear loading area is less efficient than the one before it

Loading Area Capacity Example

- Market Street at Presa Street, San Antonio, Texas

Loading Area Capacity Example

- Based on real-world data from San Antonio, reported in TCRP Digest 38
- Average dwell time = 30 sec
- Coefficient of variation = 53%
- Assume a desired 10% failure rate (downtown)
- g/C ratio = 0.55
- On-line stop
- 3 loading areas

Bus Stop Capacity Example

- 42 buses per hour is the capacity of a single loading area
- This stop has three on-line loading areas (2.45 effective loading areas)
- 42 * 2.45 = 102 buses per hour (round down)
- Agency experience was that about 100 buses per hour was as many as could be scheduled without having operational problems
Person Capacity

“The number of people that can be carried past a given location during a given time period under specified operating conditions without unreasonable delay, hazard, or restrictions, and with reasonable certainty.”

Person Capacity: Scheduled

- The number of people that can be served day after day under the current schedule, without exceeding the loading standard on any bus

Person Capacity: Design

- The maximum number of people that reasonably could be carried at a stop or at the maximum load point of a facility, with no limit on the supply of buses

Allowed Loading

- Maximum number of people on a given bus
 - Vehicle characteristics
 - Length, width, floor height, seating arrangement
 - Agency loading standards
 - Standees allowed?
 - Maximum schedule load
 - Average over the hour, or not to be exceeded during the hour?
 - Crush loading

Peak Hour Factor (PHF)

- Passengers typically will not arrive at a stop at an even rate
- Need sufficient capacity to handle peaks in demand without causing pass-ups
- Not all of the available capacity (seats and standing space) will be utilized because of these variations in passenger arrivals
Peak Hour Factor (PHF)

- Used to adjust hourly volumes to reflect flow rates during a shorter peak period
- In traffic engineering, a 15-minute peak is usually used:

\[
\text{PHF} = \frac{\text{Volume during peak 15 minutes}}{\text{Volume during peak hour}}
\]

- A PHF of 0.80, for example, means that average hourly volumes are 80% of the volumes during the peak 15 minutes (if they were sustained for an entire hour)
- Looked at another way, average vehicle loading during the peak 15 minutes is \(1/\text{PHF}\) (in this case 25%) higher than the average loading during the peak hour

Typical Peak Hour Factors

- Bus: 0.60 to 0.95
 - Use 0.75 as default if no other info
 - Higher value (e.g., 0.85) appropriate if scheduled headways are varied to even out passenger loads
 - Value close to 1.00 may indicate a need for more service
- TCQSM also gives typical values for rail modes
 - Light rail = 0.60 to 0.80 (0.75 default)
 - Commuter rail = 0.56 to 0.75 (0.60 default)

Vehicle Capacity is a Constraint

- A stop or facility’s vehicle capacity sets an upper limit on the number of passengers that could be carried during a given time

Person Capacity Example

- A light rail line has a capacity of 20 trains per hour, but only 8 trains per hour are currently scheduled
- Each train currently has 2 cars, but platforms allow up to 3-car trains
- Each car has a maximum schedule load of 150 passengers
- What is the person capacity?
Person Capacity Example

- Each train can carry 300 passengers under maximum schedule load conditions (2 cars * 150 p/car)
- Over the course of an hour, not all of this offered capacity will be able to be used, due to variations in passenger arrivals
 - Default PHF = 0.75

Person Capacity Example

- Person capacity (current schedule):
 - (8 trains/h) * (300 p/train) * 0.75 = 1,800 p/h
- Person capacity (ultimate):
 - (20 trains/h) * (450 p/train) * 0.75 = 6,750 p/h

Busways

- Most exclusive facility type
- 40-50 mph running speeds typical between stations
- Extensive infrastructure

Types of Bus Facilities

- Grade-separated busways
- Freeway HOV lanes
- Arterial street bus lanes
 - At-grade busways (in street median or parallel to street)
 - Exclusive lanes
 - Bus streets
- Mixed traffic
 - Most common facility type

Uninterrupted flow
- No traffic signals, stop signs
- Exclusive use by buses
- Grade-separated
- Off-line bus stops, or passing lane at stops
Busways

- Often scheduled for a mix of express and local service
- Can provide bus-only access points
- CBD access
- CBD distribution

Potential capacity constraints
- On-street operations in or near the CBD
- Busway supplies more buses than can be served
- High-dwell time stations
- Stations without passing lanes

Busway Definition Issues

- Term "busway" has been applied to a number of exclusive bus facilities with greatly different speed & capacity characteristics
 - Fully grade-separated facilities
 - Exclusive, interrupted-flow facilities (e.g., South Dade Busway) with some traffic signals
 - Median bus lanes (common in South America) with frequent signals

TCQSM defines several busway types:
- Grade-separated busways (Ottawa, Pittsburgh, Brisbane)
- Median busways (Vancouver, Cleveland)
- At-grade busways (Miami, Los Angeles)
- Busways with traffic signals are treated as arterial street bus lanes for capacity purposes
 - Exception: full signal pre-emption (like some LRT lines) can be treated as grade-separated for capacity purposes

Freeway HOV Lanes

- High Occupancy Vehicle lanes
- Generally found in larger cities
- Range in length from miles to short congestion bypasses
- Provide faster operations for HOVs

Uninterrupted flow
- May be shared with 2+ or 3+ carpools
- Lanes may or may not be separated from other traffic
- Off-line bus stops, if any
Freeway HOV Lanes
- Often used in association with park-and-ride lots
- Express service from P&R to downtown or other major destinations

Freeway HOV Lane Capacity
- Bus capacity generally will be constrained before or after HOV lanes
 - CBD bus distribution needs to be addressed
- Other than the Lincoln Tunnel, bus volumes do not approach a freeway lane’s capacity
 - Lincoln Tunnel: 735 bus/h & 32,000 p/h
- HCM procedures can be used to calculate the vehicle capacity of an HOV lane shared with carpools

Arterial Street Bus Lanes
- Interrupted flow
- At least one lane reserved exclusively for buses
 - Right turn, taxi exceptions
- Buses may or may not share other lanes with general traffic

Arterial Street Bus Lanes
- Variety of designs
 - 1 & 2 lanes
 - Same direction & contraflow
 - Physically separated or not
 - Part-time & full-time

Exclusive Bus Lane Types
- Type 1
 - Buses must remain in a single lane
- Type 2
 - Buses may use adjacent lane, if traffic permits
- Type 3
 - Two lanes reserved for buses, or
 - Single lane, with off-line bus stops

Type 1 Bus Lanes
- Single lane
- No passing opportunities at stops
- May be physically separated from other traffic
Type 1 Bus Lanes

- **Typical applications**
 - Single, frequent, headway-based route
 - Downtown circulators & distributors
 - Bus streets
 - Median busways

Denver

Type 2 Bus Lanes

- **Single lane reserved for buses**
 - Right turns may be allowed
 - Taxis, HOVs may be allowed
 - Buses may use general-purpose lanes for passing

San Antonio

Type 2 Bus Lanes

- **Typical applications**
 - Streets with frequent bus service
 - Part-time lanes created by removing parking

- **Enforcement issues**
 - Double-parking
 - Non-bus use

Montréal

Type 3 Bus Lanes

- **Two lanes reserved for buses**
 - Single exclusive lane with passing opportunities at stops
 - Other traffic not allowed to turn right from lanes

New York

Type 3 Bus Lanes

- **Typical applications:**
 - Downtown streets with very high bus volumes (New York, Portland)
 - At-grade busways

Miami

Bus Lane Capacity Factors

- **Critical Bus Stop Capacity**
 - The most important facility capacity factor
 - Sets an upper limit to the capacity of stops used by the same group of buses
Bus Lane Capacity Factors

- Critical Bus Stop Capacity
- Bus Lane Design

- Bus lane type determines bus freedom to maneuver around obstacles
- Bus stop location affects how right turns will impede bus movements

Mixed Traffic Operations

- Two bus lane types:
 - Type 1: One travel lane in direction of travel
 - Type 2: Two or more lanes in direction of travel

- Most common bus environment
- Buses share their lane with other traffic
- Interrupted flow
- Potential for delays from a variety of sources

Portland Arterial Bus Lane Capacity

- Type 1:
 - One travel lane in direction of travel
- Type 2:
 - Two or more lanes in direction of travel

- Right-turn volumes (may block curb lane)
- Adjacent lane volumes (inhibit passing)
- Conflicting ped volumes (may impede right turns)
Capacity Methodologies for Bus Facilities

- Same as for bus stops
 - Planning method
 - Graphical method
 - Uses default values for inputs
 - Useful for narrowing list of alternatives to evaluate before jumping into an operations analysis or simulation
 - Operations method
 - Computational method
 - Use when input values are known

Critical Stop Identification

- Both methods require identifying the critical stop
- Usually the stop with the greatest passenger activity (longest dwell times)
- Other factors to check:
 - Near-side stop with high right-turn and pedestrian volumes
 - Traffic signal with low green time for bus movements

Planning Methodology Inputs

- Facility type
 - Exclusive—Type 1, 2, or 3
 - Mixed—Type 1 or 2
- Critical stop location
 - Near-side, far-side
- Critical stop average dwell time
 - 30 or 60 seconds

Planning Methodology Example

- Curb bus lane in downtown
- Critical stop information:
 - On-line
 - Near-side
 - 200 right turns per hour
 - 400 conflicting peds per hour
 - 2 loading areas
 - 60 seconds dwell time
- Passing allowed from curb lane

Planning Methodology Defaults

- Downtown location
 - 10% failure rate
 - $g/C = 0.45$
- 60% dwell time variability
- On-line stops
- TCQSM spreadsheets can be used to develop graphs for different sets of default and input values
Planning Methodology Example

Bus Lane Capacity

- Bus lane capacity is the capacity of the critical bus stop, reduced by a factor \(f \) accounting for right-turning cars that impede buses.

- Right-turn volume
- Right-turn capacity (relates to ped volumes)
- Bus stop location factor

Planning Method Next Steps

- Bus lane capacity of 17 buses per hour is less than the volume that guidelines suggest are needed for a bus lane.
- What could be done to increase capacity?

Bus Stop Location Factor \((f) \)

- Near-side stops are affected more by right turns than far-side stops.
- Contraflow and median lanes unaffected by right turns.
- Type 3 lanes prohibit right turns: bus lane capacity = bus stop capacity.

- \(f \) values:
 - Type 1: 0.5
 - Type 2: 0.3
 - Type 3: 0.0

Initial Right-turn Volume:

- 10 buses/h × 1.75 = 17 buses/h
Right-Turn Capacities

<table>
<thead>
<tr>
<th></th>
<th>0.00</th>
<th>0.25</th>
<th>0.50</th>
<th>0.75</th>
<th>1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>C</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>

- Approximate values
- Consult the HCM if more precise values are required

Operations Method Example

- Right-turn capacity:

Operations Method Example

- Right-turn factor:

Operations Method Example

- Critical bus stop capacity:

Operations Method Example

- Bus lane capacity:
Mixed Traffic Bus Capacity

- Same basic procedure as exclusive lanes
- \(\frac{v}{c} \) ratio of right (curb) lane substituted for \(\frac{v}{c} \) ratio of right-turn movement—use HCM to determine capacity
- Procedure has not been field-verified, but theoretical basis exists
- Planning and operations methods

Typical Bus Lane Operation

- All buses stop at every stop
- Bus stops located every 2-3 blocks
- Capacity generally limited to no more than 100 buses per hour, depending on:
 - Dwell time at critical stop
 - Right-turn volumes
 - Number of loading areas provided

Skip-Stop Operation

- Routes divided into 2-4 groups
- Bus stops located in every block
- Buses stop at every 2nd, 3rd, or 4th stop—the one assigned to their group
- Can significantly increase capacity, but makes system more complex for passengers

Skip-Stop Example

4 stops in the pattern

WASHINGTON ST
ALDER ST
MORRISON ST

Skip-Stop Factor

- \(f_a \) = arrival type factor (ability to fully utilize bus stops)
 - 0.50: random arrivals (poor scheduling/schedule adherence)
 - 0.75: typical arrivals (imperfect schedule adherence)
 - 1.00: platooned arrivals
Skip-Stop Factor

- \(f_i \) = adjacent lane impedance factor (reflects bus' ability to pass each other)
- \(N_{ss} \) = number of stop patterns (e.g., four for Portland on 5th & 6th Ave.)

Portland Mall (5th Avenue) Example

- Data from Transportation Research Record 38
 - July 1997
 - Prior to opening of Westside MAX—bus mall scheduled at close to its capacity
- Used to develop speed estimation procedures now in the TCQSM
 - Speed estimation will be covered later

Portland Mall (5th Avenue) Example

- Data cover Oak to Morrison
- \(g/C = 0.45 \)
- \(t_c = 10 \) seconds
 - Bus operating rule on mall requires buses in the middle lane to yield to buses exiting stops
- 2 on-line loading areas: \(N_{el} = 1.75 \)
- Assume 7.5% failure rate: \(Z = 1.28 \)
- No right turns allowed from bus lanes

Portland Mall (5th Avenue) Example

- \(f_a = 0.75 \) (imperfect schedule adherence)
- \(N_{ss} = 4 \)
- \(f_i = 1.00 \)
 - scheduled volume = 160 bus/h
 - capacity = 765 bus/h (from HCM)

Number of buses scheduled (160) was close to the mall's capacity (166), at a 7.5% failure rate.
Additional Reading

- TCQSM, Part 4