

Today's Topics

- Types of bus facilities
- Bus facility capacity
- Person capacity

PORTLAND STATE

PORTLAND STATE

- Capacity of a single loading area (bus berth)
- Capacity of a bus stop > Provides one or more loading areas
- Facility capacity
 - > Determined by the capacity of the "critical" bus stop along the facility-the stop with the lowest capacity
 - > Generally the stop with the longest average dwell time

PORTLAND STATE UNIVERSITY

Bus Stop Capacity Example

- 42 buses per hour is the capacity of a single loading area
- This stop has three on-line loading areas (2.45 effective loading areas)
- 42 * 2.45 = 102 buses per hour (round down)
- Agency experience was that about 100 buses per hour was as many as could be scheduled without having operational problems

PORTLAND STATE I INIVERSITY

Vehicle Capacity is a Constraint
 A stop or facility's vehicle capacity sets an
upper limit on the number of passengers that could be carried during a given time
could be carried during a given time
PORTLAND STATE

Person Capacity Example

- A light rail line has a capacity of 20 trains per hour, but only 8 trains per hour are currently scheduled
- Each train currently has 2 cars, but platforms allow up to 3-car trains
- Each car has a maximum schedule load of 150 passengers
- What is the person capacity?

PORTLAND STATE I INIVERSITY

PORTLAND STATE

Person Capacity Example

- Person capacity (current schedule):
 > (8 trains/h) * (300 p/train) * 0.75 = 1,800 p/h
- Person capacity (ultimate):
 - > (20 trains/h) * (450 p/train) * 0.75 = 6,750 p/h

PORTLAND STATE

Types of Bus Facilities

- Grade-separated busways
- Freeway HOV lanes
- Arterial street bus lanes
 - > At-grade busways (in street median or parallel to street)
 - Exclusive lanes
 - Bus streets
- Mixed traffic
 - Most common facility type

Freeway HOV Lane Capacity

- Bus capacity generally will be constrained before or after HOV lanes
 - > CBD bus distribution needs to be addressed
- Other than the Lincoln Tunnel, bus volumes do not approach a freeway lane's capacity
 - > Lincoln Tunnel: 735 bus/h & 32,000 p/h
- HCM procedures can be used to calculate the vehicle capacity of an HOV lane shared with carpools

Capacity Methodologies for Bus Facilities

Same as for bus stops

- Planning method
 - · Graphical method
 - · Uses default values for inputs
 - Useful for narrowing list of alternatives to evaluate before jumping into an operations analysis or simulation

> Operations method

- Computational method
- Use when input values are known

PORTLAND STATE

Critical Stop Identification

- Both methods require identifying the critical stop
- Usually the stop with the greatest passenger activity (longest dwell times)

• Other factors to check:

- Near-side stop with high right-turn and pedestrian volumes
- > Traffic signal with low green time for bus movements

PORTLAND STATE

Planning Methodology Inputs

- Facility type
 - Exclusive—Type 1, 2, or 3
 - Mixed—Type 1 or 2
- Critical stop location
 > Near-side, far-side
- Critical stop average dwell time

> 30 or 60 seconds

PORTLAND STATE

Planning Methodology Inputs

For exclusive bus lanes:

- Right-turn volume at critical stop
 Ranges from 0-400 vehicles/hour
- Conflicting pedestrian volume at critical stop
 Ranges from 0-800 peds/hour
- For mixed traffic lanes:
 - Curb-lane volume at critical stop
 Ranges from 0-400 vehicles/hour

PORTLAND STATE

Planning Methodology Defaults

- Downtown location
 - > 10% failure rate
 - *⊳ g/C* = 0.45
- 60% dwell time variability
- On-line stops
- TCQSM spreasheets can be used to develop graphs for different sets of default and input values

PORTLAND STATE

Planning Methodology Example

- Curb bus lane in downtown
- Critical stop information:
 - ≻ On-line
 - ➤ Near-side
 - 200 right turns per hour
 - > 400 conflicting peds per hour
 - 2 loading areas
 - ≻ 60 seconds dwell time
- Passing allowed from curb lane

Mixed Traffic Bus Capacity

- Same basic procedure as exclusive lanes
- v/c ratio of right (curb) lane substituted for v/c ratio of right-turn movement—use HCM to determine capacity
- Procedure has not been field-verified, but theoretical basis exists
- Planning and operations methods

PORTLAND STATE

Typical Bus Lane Operation

- All buses stop at every stop
- Bus stops located every 2-3 blocks
- Capacity generally limited to no more than 100 buses per hour, depending on:
 - > Dwell time at critical stop
 - Right-turn volumes
 - ➤ Number of loading areas provided

PORTLAND STATE

Skip-Stop Operation

- Routes divided into 2-4 groups
- Bus stops located in every block
- Buses stop at every 2nd, 3rd, or 4th stop—the one assigned to their group
- Can significantly increase capacity, but makes
 system more complex for passengers

 Portland Mall (5th Avenue) Example
 Portla

 • Data cover Oak to Morrison
 g/C = 0.45

 • g/C = 0.45
 sv

 • t_c = 10 seconds
 w

 > Bus operating rule on mall requires buses in the middle lane to yield to buses exiting stops
 w

 • 2 on-line loading areas: N_{el} = 1.75
 ssume 7.5% failure rate: Z = 1.28

 • No right turns allowed from bus lanes
 PORTLAND STATE

Additional Reading

TCQSM, Part 4

PORTLAND STATE UNIVERSITY