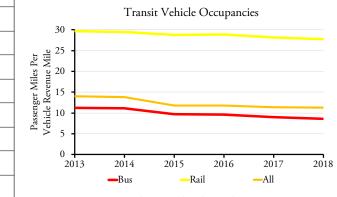


Transit is often touted as a way to save energy. But since 2009 transit has used more energy, per passenger mile, than the average car. Since 2016, transit has used more than the average of cars and light trucks together.


Automobiles and planes are becoming more energy efficient each year. But the annual reports of the National Transit Database reveals that urban transit is moving in the opposite direction, requiring more energy to move a person one mile in each of the last four years.

Transit has been less energy efficient than the average car since 2009. Light trucks (vans, pickups, SUVs) may soon become more efficient than transit as well. 2018 automobile data are not yet available; 2017 numbers are estimated from this report; prior years are from the Transportation Energy Databook.

The reason for this is simple: ridership is declining, but transit agencies aren't proportionately reducing miles of transit service. As a result, the average occupancies of buses and other transit vehicles has declined in every year since 2013. While transit agencies may be purchasing more fuel-efficient vehicles, the increase in average efficiencies per vehicle mile can't make up for the loss in passengers.

These numbers are based on the National Transit Database, which reports the number of gallons of Diesel fuel, gasoline, natural gas, and other fuels as well as the number of kilowatt-hours of electricity are used by transit systems across the country. I've converted these numbers to British thermal units (BTUs) using standard factors, such as that a gallon of Diesel fuel has 138,500 BTUs.

Transit occupancies have steadily declined since 2013. "Bus" includes commuter bus, rapid bus, trolley bus, and conventional bus (which the FTA calls "motor bus"). "Rail" includes commuter, heavy, light, and hybrid rail and streetcars, but not monorail or automated guideways. "All" includes all transit, not just bus and rail.

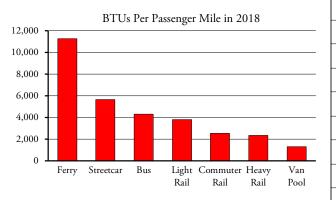
For electricity, I also took into account the fact that two-thirds of the energy used in a power plant is lost in generation and transmission. In other words, in order to deliver 1 kilowatt-hour (3,412 BTUs) of energy to a customer, an electrical system must consume the equivalent of 10,236 BTUs of fossil fuels or other energy at the power plant. Electric motors tend to be more efficient than internal combustion engines, but when the losses from generation and transmission are accounted for, the efficiencies are about the same.

Energy Consumption by Mode

The calculations show that ferries and streetcars use huge amounts of energy per passenger mile. Automated guideways (i.e., people movers) aren't shown in the chart on page 3 but use even more energy per passenger mile than ferries. Buses and light rail are well above the average automobile.

Commuter and subway/elevated trains (heavy rail) appear to be more efficient, but this is largely because

	Rail System	BTUs																		
_		DIUS	Gram	s CO ₂		Rail Sy	vstem]	BTU	Js	G	ram	s CC)		-
	Commu	ter Rail		2		-			Lig	ght F	Rail (cont	inue	d)				2		<u> </u>
	Alamont (San Jose-Stockton)	1,044	-	76		Charle	otte						í,09			15	50		Í	
	Albuquerque	3,834		81		Clevela	and						5,22			98			ľ	
_	Boston	2,736		00		Dallas							5,584			28				-
	Chicago Metra	1,977		58		Denve	r						3,79			24				
	Chicago N. Indiana	2,852		90		Houst							4,38				24		ſ	
_	Connecticut	9,741		13		Los Ar	0						3,33				59		1	-
	Dallas-Fort Worth	4,876	35	57		Minne	apoli	s-St.	Paul			4	í ,22	7		19	97			
	Denver	2,776		78		NJ Hu			gen				4,6 82			10)8		ſ	
	Los Angeles	2,600	19	90		NJ Ne	wark					4	5,64	3		13	30			<u> </u>
	Maryland	2,952	18	81		Norfol	k					7	7,592	2		25	53			-
	Miami Tri-Rail	4,012		94		Phoen	ix					2	2,07	6		8	33		ſ	
	Minneapolis North Star	3,318	24	43		Pittsbu						1(),83	1		38	38		ľ	
_	Nashville	6,452	47	72		Portlar	nd					4	2,74	3		3	34			┢
	New Jersey Transit	2,728		08		Sacran							5,15			10				
	New York Long Island RR	1,857		51		Salt La		ity				4	4,69	9		33	36		ſ	
\neg	New York Metro-North	2,752		78		San Di	0						2,28			4	í7			┢
	Orlando	6,212		55		San Fr	anciso	0					í ,31			9	90			
	Philadelphia DOT	2,440	5	87		San Jos	se					4	5,20	0		10)8		ſ	
	Philadelphia SEPTA	4,879		75		Seattle							1,6 0			1	15			
_	Portland-Boston	2,622		92		St. Loi	ıis					4	í,1 82	2		32	27			_
	Salt Lake City	2,758		02																
	San Diego	3,118		28							Stree									
_	San Francisco	1,430		05		Atlanta							9,672			81				-
	Santa Rosa SMART	2,335		71		Charle							3,70			31				
	Seattle	1,638		20		Cincin							3,674			88			ſ	
_	Virginia Railway Express	1,788	13	31		Dallas							5,38			1,35			ſ	
						Dallas		linne	ey				4,05			20				
	Heavy					Detroi							4,542			73			ſ	
	Atlanta	2,111		88		Kansas							3,26			25				
_	Baltimore	14,579		52		Kenosl							2,93			2,09				-
	Boston	3,417		27		Little I),96			2,16				
	Chicago	3,391		26		Memp							3,00			78			Í	
	Cleveland	4,674		02		New C							3,33				55		1	-
	Los Angeles	4,340		90		Philad		a					1,8 5				74			
	Miami	5,138		23		Portlar							2,71				33		ſ	
	New York MTA	1,770		34		San Fr		0					5,76			12				1
-	New York PATH	2,389		55		Seattle							3,64				25			+
	Philadelphia PATH	4,760		10		Tacom							5,14				í7			
	Philadelphia SEPTA	4,026		44		Tampa							3,75			38				
\neg	San Francisco	1,879		39 77		Tucsor							2,90			51				┢
	San Juan Staten Jalan d	2,141		77		Washii	igton	l				50	5,99	/		3,04	±1			-
	Staten Island	5,344		03						r	<i></i> ·	תן	:1							
	Washington	4,342	2:	32		1				H	lybrid			2		20	12			F
-	Ţ :	Dail				Austin Dento							2,773			20 38				+
	<i>Light</i> Baltimore	6,933	24	63		Dento NJ Riv		ne					5,264 2,530			38 18				
	Boston	6,955 3,421		55 27		Oaklaı		110					2,330 3,194			23			ſ	
-	Buffalo	5,421 7,601		46		Portlar							3,812			25 27				t
	Dullalu	7,001	12	τU		San Di							2,689			19				-
							icgu					4	2,00	,		13	, ,			
						1														
-						 -														┢
+			1		_						ſ									_



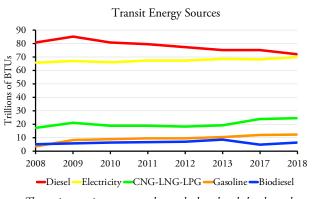
commuter- and heavy-rail numbers are dominated by New York where occupancy rates are high. As shown in the table on page 2, commuter rail lines in such regions as Dallas-Ft. Worth, Miami, and even Philadelpha use far more than the average amount of energy per passenger mile, as do heavy rail lines in Baltimore, Boston, Los Angeles, and Miami. Perhaps the biggest surprise is the DC Metrorail, the nation's second-most heavily used rail system, which consumes almost 25 percent more energy per passenger mile than the average light truck used in 2017.

Ironically, the most energy-efficient transit mode—van pools—is the one that is based on conventional automobiles rather than large buses or railcars.

Energy Consumption by Urban Area

The numbers for individual urban areas are even worse for transit. Among the largest 100 urban areas, transit is more energy-efficient than cars only in New York, San Francisco-Oakland, and Honolulu. Transit in Atlanta and Portland is less energy-efficient than cars but more than the average light truck. Just about everywhere else, transit is a real energy hog. The adjacent table has numbers for the 54 urban areas. Among smaller urban areas, Stockton (which is the 102nd largest area) appears to be more energy efficient than cars, but only because the Altamont Commuter Express is attributed to Stockton.

Even where rail transit appears to be more energy efficient than driving on an operational basis, this doesn't account for the energy costs of construction. Urban roads carry far more passengers over their lifetimes than rail lines, so the energy cost of construction per passenger mile is much higher for rail transit. Rails must be rebuilt about every 30 years, which also requires large amounts of energy. Heavy use of steel and concrete also has a high greenhouse gas cost.


Greenhouse Gases

Though transit is less energy efficient than the average car, it emits slightly fewer greenhouse gases per passenger mile than than the average car. Transit was actually worse than the average car as recently as 2010, but by 2014 it had reduced its climate footprint by 25 percent.

It accomplished this partly by partially converting

	Energy and GHGs Per Pas	ssenger Mile b	y Urban Area	
		BTUs	Grams CO ₂	
	New York	2,341	94	-
	Los Angeles	4,218	287	
	Chicago	3,395	197	
	Miami	4,854	324	
	– Philadelphia	4,435	210	
	Dallas-Ft. Worth	6,482	441	
	Houston	4,066	290	
	- Washington	4,459	277	_
	Atlanta	3,172	204	
	Boston	3,477	202	
	Detroit	4,601	326	
	Phoenix	5,296	389	
	San Francisco-Oakland	2,616	115	
	Seattle	4,101	280	
	– San Diego	3,648	240	-
	Twin Cities	4,479	300	
	Tampa-St. Petersburg	5,601	417	
	Denver	4,027	279	
	Baltimore	4,425	269	-
	St. Louis	5,062	378	
	San Juan	4,483	314	
	Riverside	7,231	581	-
	Las Vegas	4,274	341	
	Portland	3,270	159	
	- Cleveland	5,821	417	
	San Antonio	6,013 5,242	466	-
	Pittsburgh	5,242 6,642	341 392	
	Sacramento San Jose	6,642 4,531	264	
	Cincinnati	5,399	204 394	
	Kansas City	6,895	523	
	Orlando	5,000	370	
	Indianapolis	6,844	500	
	VA Beach	6,032	419	-
	- Milwaukee	5,329	389	
	Columbus	7,309	565	
	Austin	5,103	373	\vdash
	Charlotte	4,687	305	-
	Providence	4,746	347	
	Jacksonville	6,514	488	
	Memphis	6,811	495	\vdash
	Salt Lake	4,011	293	
	Louisville	5,101	372	
	Nashville	5,472	396	-
	– Richmond	4,397	344	-
	Buffalo	4,875	309	
	Hartford	4,958	363	
	– Bridgeport	5,671	413	-
	New Orleans	6,598	458	
	Raleigh	6,156	443	
	Oklahoma City	5,971	449	\vdash
	Tucson	5,293	383	
	El Paso	4,714	390	
	Honolulu	2,746	200	
				+
1				1

from Diesel to other fuel sources; originally biodiesel but more recently compressed natural gas. In addition, the nation's electric industry has converted from heavy reliance on coal to heavy reliance on natural gas. Both of these changes reduced greenhouse gas outputs per unit of energy. Since 2014, however, declining transit ridership increased greenhouse gas emissions per passenger mile by about 7 percent.

The main transit energy trend over the last decade has been the replacement of Diesel fuels with compressed natural gas, which paralleled the electric industry's conversion from coal to natural gas.

Calculations of greenhouse gas emissions are straightforward for fossil fuels as burning a gallon of gasoline, Diesel, or natural gas results in a consistent output of carbon dioxide. For electricity, I presumed that the electricity used by a transit agency is generated by a the combination of power sources used in the agency's state, as reported in the Department of Energy's *State Electricity Profiles*. Even if a transit company claims that it buys renewable energy, the reality is that electricity is fungible, and renewable energy consumed by a transit agency means less renewable energy for someone else.

While transit scores better than automobiles overall, this is only because of New York, which produces some 44 percent of transit riders and whose electricity profile claims to emit less than half the national average of carbon dioxide per kilowatt-hour. However, New York doesn't generate enough electricity to satisfy its needs and must import some, and the greenhouse gases attributable to imported electricity is unknown.

Two-thirds of all states are net electricity exporters, and some major exporters such as Texas and Wyoming generate most of their electricity with fossil fuels. Many of the importer states, including California and New York, generate most of their electricity from non-fossil-fuel sources, but their imports are probably more dependent on fossil fuels.

For a sensitivity analysis, I assumed that electricity brought into net importer states was generated by the national average of fuel sources. Under this assumption, electric-powered transit generated 22 percent more greenhouse gases in California, 15 percent more in New York, and about 7 percent more in Massachusetts, Maryland, and Virginia, while Washington DC transit generated 17 percent less greenhouse gases. For the most part, these numbers aren't big enough to fuss about, especially since we can't accurately estimate the mix of sources of energy that is imported into the various states. The greenhouse gas emissions shown in the above tables are based on state electricity profiles with the caveat that the actual numbers in California and New York are probably higher while DC is probably lower.

Based on the state profiles, transit may be more greenhouse-gas-efficient than cars nationwide, but it is less efficient than cars in 93 out of the nation's 100 largest urban areas. Further, transit is more greenhouse-gas-efficient than light trucks in only three more urban areas. Thus, driving a car or light truck is more climate-friendly than transit in 90 of the nation's 100 largest urban areas (and all but a handful of the smaller ones).

The results of my calculations of energy consumption and greenhouse gas emissions for each transit agency, mode, and urban area are in my 2018 Transit Database summary spreadsheet. For details on how to use this spreadsheet, see last week's policy brief.

Randal O'Toole, the Antiplanner, is a land-use and transportation policy analyst and author of Romance of the Rails: Why the Passenger Trains We Love Are Not the Transportation We Need. *Masthead photo of the Altamont Commuter Express is by David Gruber.*