

Launched in 2016, INRIX Research uses INRIX proprietary big data and expertise to make the movement of people and goods more efficient, safer and convenient.

We achieve this by leveraging billions of anonymous data points every day from a diverse set of sources on all roads in countries of coverage. Our data provides a rich and fertile picture of urban mobility that enables INRIX Research to produce valuable and actionable insights for policy makers, transport professionals, automakers, and drivers.

The INRIX Research team has researchers in Europe and North America, and is comprised of economists, transportation policy specialists and data scientists with backgrounds from academia, think tanks and commercial research and development groups. We have decades of experience in applying rigorous, cutting-edge methodologies to answer salient, real-world problems.

INRIX Research will continue to develop the INRIX Traffic Scorecard as a global, annual benchmark as well as develop new industryleading metrics and original research reports. In addition to our research outputs, INRIX Research is a free and valuable resource for journalists, researchers and policymakers. We are able to assist with data, analysis and expert commentary on all aspects of urban mobility and smart cities. Spokespeople are available globally for interviews.

CONTENTS

TABLES

Top 25 Global	8
Top 25 United States	10
Top 10 Corridors US	11
Top 25 Europe	14
Top 10 Corridors UK	15
Top 10 Corridors Inside London	16
Top 5 Corridors Outside London	16
Top 10 Cities Germany	17
Top 10 Corridors Germany	18

INTRODUCTION	2
CONGESTION EXPLAINED	3
DATA AND METHODOLOGY	4
ECONOMIC IMPACTS	6
RANKINGS	7
GLOBAL RANKINGS	8
THE UNITED STATES	9
EUROPE	12
THE UNITED KINGDOM	14
GERMANY	16

INTRODUCTION

Congestion continues to grow across the world with continued urbanization and population growth. The impacts of vehicle travel are pervasive, including air pollution, time loss, and road fatalities. However, emergent technologies such as shared micromobility and the rise in people opting to walk, bike and take public transport has led to a rapidly changing mobility landscape. Within this complex and evolving landscape, INRIX 2019 Global Traffic Scorecard provides valuable mobility insights across modes and between cities.

The 2019 Scorecard builds upon the methodology adopted in 2018, with the goal to provide a more granular and holistic analysis of mobility within the world's most congested cities. New additions to the 2019 Scorecard include commute mode (bicycle and public transport) travel time comparisons, incident congestion impacts, and the incorporation of multiple commutes within each metro. Combined with drive-time maps and last-mile speeds, these advanced metrics provide a unique basis for cross-national commuting comparisons and analysis.

INRIX collects billions of anonymous data points every day from a diverse set of sources, including connected vehicles, cities, Departments of Transportation (DOTs), road weather conditions, journalistic incidents, social media, parking, mobile and other Internet of Things (IoT) devices. With coverage on all roads in countries of coverage, and lane by lane precision, INRIX is the preferred provider of driving and mobility intelligence for leading automakers.

1 United States of America. Federal Highway Administration. U.S. Department of Transportation. Definition, Interpretation, and Calculation of Traffic Analysis Tools Measures of Effectiveness. By Richard Dowling. Vol. VI. Traffic Analysis Tool Box. Washington, D.C.: U.S. Federal Highway Administration, Office of Operations, 2007. 2 Ibid.

CONGESTION EXPLAINED

Congestion at the most basic level can be described as the demand for road space exceeding supply. However, the critical phenomenon known as 'facility breakdown' is frequently underappreciated. Facility breakdown occurs when a road cannot effectively accommodate more vehicles, which causes a decrease in the roadway's overall capacity as more vehicles try to force their way onto the roads.¹

Highways designed to operate safely at speeds of 60 MPH, can move nearly 2,300 cars per lane per hour at 45 MPH. The same roadway may carry fewer than 700 cars per lane during facility breakdown.² Facility breakdown is why expansion and congestion relief measures frequently fail as the supply of road-space cannot increase enough to escape this trap. While this example pertains to highways, every road and/or road network is subject to facility breakdown.

INRIX Research recognizes that commute duration remains mostly constant across cities worldwide, irrespective of congestion levels. On average, commuters are unwilling to spend more than one hour per day commuting.³ Trip times are kept in check by increased housing density, household relocation, and greater mobility via infrastructure improvements.⁴

According to INRIX data, travel speeds, congestion rates and time loss positively correlate with population and city density. However, motorists in high congestion cities do not typically travel as far since they are geographically closer to more destinations.⁵ It is the driving experience that differs most across cities, not the duration of trips. Typically, dense cities experience low speeds and shorter commute distances in contrast to low-density cities which exhibit higher speeds, but longer distances traveled. In both contexts, commuters spend approximately a half-hour on average communting to or from work.

One notable exception to this trend is Singapore. With aggressive anti-congestion policies, including high vehicle ownership fees and congestion tolls, the city's road network continues to facilitate high-speeds despite high urban density.⁶ Charging for road space curtails the incidence and impact of facility breakdown. In Barcelona, Madrid, Paris and Zurich, authorities actively pursue policies that reduce roadway performance and capacity in favor of public transport, biking, and walking.⁷ The reprioritization of street space from vehicles to alternative uses, including bus lanes, bike lanes, and loading zones is a trend that continues to gain momentum globally. Within the United States, the banning of private vehicles on Market Street in San Francisco, and the highly successful 14th Street Busway in New York City are prime examples. When interpreting the 2019 Global Traffic Scorecard's results, understanding the context of road performance within a city's broader mobility framework is critical.

³ Marchetti, C. "Anthropological Invariants in Travel Behavior." Technological Forecasting and Social Change47, no. 1 (1994): 75-88. doi:10.1016/0040-1625(94)90041-8.

⁴ Angel, Shlomo, and Alejandro M. Blei. "The Productivity of American Cities: How Densification, Relocation, and Greater Mobility Sustain the Productive Advantage of Larger U.S. Metropolitan Labor Markets." Cities51 (2016): 36-51. doi:10.1016/j.cities.2015.11.030.

⁵ Osman, Taner, Trevor Thomas, Andrew Monschein, and Brian Taylor. Not So Fast: A Study of Traffic Delays, Access, and Economic Activity in the San Francisco Bay Area. Report. Luskin School of Public Affairs, UCLA Institute of Transportation Studies. Los Angeles, CA: UCLA, 2016.

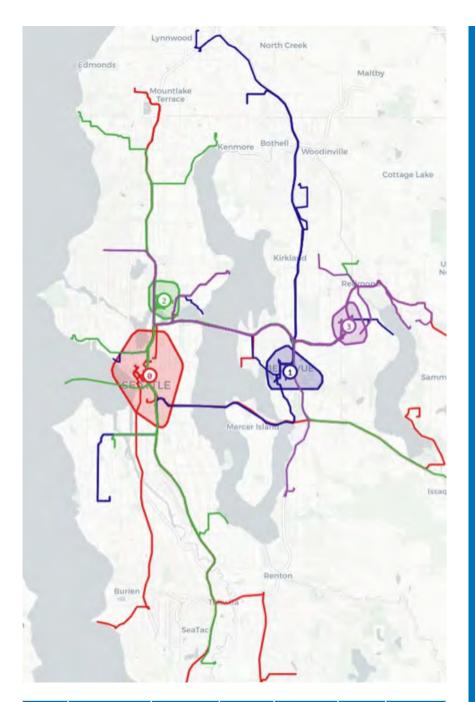
⁶ Goh, Mark. "Congestion Management and Electronic Road Pricing in Singapore." Journal of Transport Geography10, no. 1 (2002): 29-38. doi:10.1016/s0966-6923(01)00036-9.

⁷ Rosenthal, Elisabeth. "Across Europe: Irking Drivers Is Urban Policy." The New York Times (New York City), June 26, 2011.

DATA AND METHODOLOGY

The most noticeable change to the 2019 Traffic Scorecard is the refinement of commute destinations within each urban area. Previously, commute times were calculated by looking exclusively at the time it takes to get to and from the downtown core from surrounding commuter neighborhoods.

However, many cities have multiple major employment centers. To rectify this shortcoming, the 2019 Global Traffic Scorecard used anonymized observed trips to identify the most frequented routes and destinations throughout a region to create a more accurate portrayal of commuting for a region, not just to and from a downtown core. The methodological change resulted in a reduction in average delays due to a wider range of commuter behaviors now being included. With this increased level of detail, INRIX Research was able to calculate the additional time spent commuting due to traffic between multiple points within a region, which can be explored further on the Scorecard interactive city pages.


The 2019 Scorecard calculates time loss by analyzing peak speed and free flow speed data for the busiest commuting corridors and sub areas as identified by data density. Peak corresponds to the absolute worst portion of the morning and afternoon commute. Off-peak is the low point between the peak periods. Free flow is the best performance experienced over 24 hours. Employing freeflow data enables a direct comparison between peak and off-peak periods and serves as the basis for calculating time loss. Total time lost is the difference in travel times experienced during the peak and off-peak periods compared to free flow conditions on a per capita basis.

The methodological differences' impact is apparent when analyzing the Seattle metropolitan area. Within the region, four major commuting centers were identified based on anonymous trip data, and commutes for each regions were analyzed. Overall, commuters in the Seattle area lost 74 hours per year due to congestion, however, the amount of time lost changed significantly when analyzing subareas. Commuters to downtown Seattle lost 99 hours per year to congestion in conrast to commuters to Redmond (Microsoft's headquarters) who lost 41 hours per year. The map below shows both commute subaraeas and highest volume routes for the Seattle area.

For the first time, the impact of incidents on congestion is analyzed. Drawing on INRIX global incident and congestion data and analysis, INRIX Research was able to calculate the relative impact of incidents on travel time delays in cities for the U.S., U.K., and Germany.

Also new to the 2019 Global Traffic Scorecard, INRIX Research calculated trip times for both biking and public transport for the same routes from which vehicle delay is calculated. These calculations determine the feasibility of driving alternatives for the most heavily trafficked commuting corridors in each city of study.

The 2019 Global Traffic Scorecard uses three years of historical data to provide a complete year-over-year comparison of congestion and mobility. A multi-year approach enables the identification of trends in the world's largest cities and provides a basis for comparison.

CODE	AREA	PEAK SPEED (MPH)	FREE FLOW (MPH)	LAST MILE PEAK (MPH)	LAST MILE FREE FLOW (MPH)	TIME LOSS
0	Downtown Seattle	22	41	11	17	99
1	Bellevue	26	43	14	19	75
2	University District	22	39	12	19	96
3	Redmond	31	42	16	20	41

Definitions:

Impact Rank: A calculated commute based upon a city's population and the delay attributable to congestion.

Urban Area: The geographic scope of a city as defined by its road network density.

Hours Lost in Congestion: The total number of hours lost in congestion during peak commute periods compared to free-flow conditions.

Year-Over-Year Change: The percentage difference in hours lost in congestion in 2019 and 2018

Last Mile Speed: The speed at which a driver can expect to travel one mile into the central business district during peak hours.

Peak: The absolute worst portion of the morning and afternoon commute.

Off-Peak: The low point between the morning and afternoon commute periods.

Free-Flow: The best speed performance experienced over 24 hours.

Time Lost: The travel times difference between the peak and off-peak periods compared to free flow conditions.

Incident Impact: The influence of incidents on travel time delays.

Bike and Public Transport:

Green: Less than 50% difference than a vehicle commute.

Yellow: 50-100% difference than a vehicle commute.

Red: Greater than 100% difference than a vehicle commute.

ECONOMIC IMPACTS

The economic impacts associated with driving are pervasive, complex, and dynamic. To understand the burden congestion places on each driver and the economy, INRIX Research estimates the costs of congestion in the U.S., U.K., and Germany.

Time Loss to Passenger and Freight

Time loss is the excess amount of time taken on a trip caused by congestion. The cost of congestion depends upon the labor market, industrial sector, mode of transport, trip distance and travel conditions.⁸ Two preferred methods for developing estimates for work and non-work passengers' travel time savings (nonfreight movements) are revealed preference method and the cost-saving approach.9 Given the limited availability of this data, creating a definitive answer for the costs of time loss for passengers is difficult. However, ranges are derived for cities in the U.S., U.K., and Germany based upon U.S Department of Transportation guidance.¹⁰ Costs were then calculated in local currencies using 2019 values.

Congestion also increases the costs of freight movement via reduced driver productivity, higher operating costs and decreased reliability.¹¹ A high degree of variability exists between cities due to local economic conditions and the type of goods transported. For example, the impacts of delays on perishable goods are much higher than durable goods. Thus, the costs of congestion vary dramatically between cities. However, the American Transportation Research Institute estimates the total cost of congestion in the freight sector to be \$74.5 billion annually, with \$66.1 billion of it occurring in urban areas in 2018.¹²

Congestion as an Economic Indicator

While congestion is responsible for costs resulting from time loss, increased pollution rates, and higher incidents of accidents, its presence is indicative of positive economic trends and a city's desirability. The occurrence of many of the world's most dynamic cities in this report should serve as no surprise. Higher density and population correlate directly with economic growth and innovation rates, while their co-occurrence has a multiplier effect.¹³ The larger and denser the city, the more significant the benefits accrued to an individual city.

Agglomeration economics is the phenomenon of increasing productivity as a function of size and density.¹⁴ For example, in 2017, the Top 5 largest metros in the U.S. by GDP accounted for 26 percent of the nation's GDP, but represented only 17 percent of the nation's population.^{15, 16} While congestion itself has little intrinsic worth, it's symptomatic of economic vitality. In the medium- and long-term, congestion can positively impact a city by incentivizing land use changes and driving investment in high-efficiency modes of transport (public transport, biking, walking). These investments reinforce agglomeration economics, amplifying their impact.

6

RANKINGS

Global Ranking

Bogota, Rio de Janeiro, Mexico City, Istanbul, and Sao Paulo comprise the Top 5 most congested cities in the Global Congestion Impact ranking due to their large populations and severe congestion. When ranking by hours lost in congestion, four of the Top 10 cities are South American, three European, and two North American. The impact score captures the aggregate impact of congestion's impact relative to population, wheras hours lost in congestion captures exclusively the intensity of traffic in a given city.

In general, the most congested cities in the world are either older or rapidly growing cities. High density development patterns characteristic of pre-automobile cities, as found in the most congested European and North American cities, like Paris and Boston, makes them particularly ill-suited to the movement of vehicles. In contrast to these older cities, South American cities, like Bogota and Quito, are combatting extreme population growth, in geographically constrained environments, with underdeveloped infrastructure. This trendline is reflected in last mile speeds, where three of the four cities with speeds less than 10 MPH are in Europe with the fourth being in South America.

8 Sartori et.al. Guide to Cost-Benefit Analysis of Investment Projects: Economic Appraisal Tool for Cohesion Policy 2014-2020.

9 Ibid.

10 United States. Department of Transportation. Office of the Secretary of Transportation. Revised Departmental Guidance on Valuation of Travel Time in Economic Analysis.

11 Ibid.

12 Hooper, Alan. Cost of Congestion to the Trucking Industry: 2018 Update. Report. American Transportation Research Institute. Atlanta, GA, 2018.

13 Glaeser, Edward, and Joshua Gottlieb. "The Economics of Place-Making Policies." 2008. doi:10.3386/w14373.

14 Ibid.

15 U.S. Census Bureau, 2013-2017 American Community Survey 5-Year Estimates

16 U.S. Department of Commerce. Bureau of Economic Analysis. "Gross Domestic Product by Metropolitan Area, 2017." News release. https://www.bea.gov/system/files/2018-09/gdp_metro0918_0.pdf.

INRIX Top 25 Most Congested Cities in the World

2019 IMPACT RANK (2018 IMPACT)	URBAN AREA	COUNTRY	REGION	HOURS LOST IN CONGESTION (RANK 2019)	2018-2019 CHANGE	2017- 2018 Change	LAST MILE SPEED (MPH)	BIKE	TRANSIT
1 (2)	Bogota	Colombia	South America	191 (1)	3%	1%	9	A.	
2 (1)	Rio de Janeiro	Brazil	South America	190 (2)	-5%	-1%	11	A.	
3 (5)	Mexico City	Mexico	North America	158 (6)	2%	1%	12	A.	
4 (9)	Istanbul	Turkey	Asia	153 (8)	6%	3%	11	- AB	
5 (10)	São Paulo	Brazil	South America	152 (9)	5%	1%	13	A.	
6 (7)	Rome	Italy	Europe	166 (3)	1%	2%	11	A.	
7 (4)	Paris	France	Europe	165 (4)	-4%	-5%	10	A.	
8 (3)	London	United Kingdom	Europe	149 (12)	-9%	-4%	10	A.	
9 (6)	Boston, MA	United States	North America	149 (12)	-5%	9%	12	A.	
10 (13)	Chicago, IL	United States	North America	145 (14)	4%	4%	11	æ.	
11 (12)	Saint Petersburg	Russia	Europe	151 (10)	3%	12%	14	A.	
12 (8)	Philadelphia, PA	United States	North America	142 (16)	4%	11%	10	A.	
13 (14)	Belo Horizonte	Brazil	South America	160 (5)	3%	-6%	12	- AND	
14 (16)	New York City, NY	United States	North America	140 (17)	-4%	0%	11	AC.	
15 (11)	Dublin	Ireland	Europe	154 (7)	-4%	4%	10	A.	
16 (21)	Jakarta	Indonesia	Oceania	150 (11)	5%	8%	18	A.	
17 (18)	Moscow	Russia	Europe	128 (23)	-2%	10%	15	AP	
18 (20)	Quito	Ecuador	South America	144 (15)	0%	-6%	10	A.	
19 (17)	Toronto ON	Canada	North America	135 (21)	-6%	12%	11	A.	
20 (19)	Brussels	Belgium	Europe	140 (17)	-7%	-4%	9	A.	
21 (15)	Washington DC	United States	North America	124 (24)	-11%	-6%	10	A.	
22 (23)	Guayaquil	Ecuador	South America	130 (22)	4%	-4%	13	A.	
23 (24)	Sydney	Australia	Oceania	119 (27)	3%	-9%	15	A.	
24 (25)	Palermo	Italy	Europe	137 (19)	5%	8%	8	A.	
25 (22)	Lisboa	Portugal	Europe	136 (20)	-9%	11%	10	AP	

The United States:

Drivers in Boston, Chicago, and Philadelphia lose the most time annually to traffic congestion with 149, 145, and 142 hours, respectively. Their geography, age and density create road networks that enter severe breakdown once traffic strikes. It is critical to note that variations in hours lost between the 2018 and 2019 Scorecard results are primarily attributable to the incorporation of multiple commute centers within a region, which can be explored in greater detail online.

Philadelphia, Washington, D.C. and San Francisco all have the distinction of having the slowest last mile travel speeds in the country (10 MPH), while Los Angeles and Austin (16 MPH) have the fastest last mile speeds in the Top 25. The high speeds observerd in Austin and Los Angeles can be attributed to greater highway coverage than that found in many other cities. Incidents appear to play a moderate role in most American cities in terms of their impact in the country's most congested cities.

Overall, the average American driver lost 99 hours a year in traffic in 2019, costing \$1,377. Nationally, drivers lost more than \$88 billion in time to congestion. Interestingly, the five most congested cities in the U.S. are also the only cities to receive the highest score for public transit trips to replace car trips. It is attributable to these being amongst the oldest and densest cities in the country with much of their development occurring around public transport. The factors that make these cities difficult to drive in, also makes them the most attractive for using alternative modes.

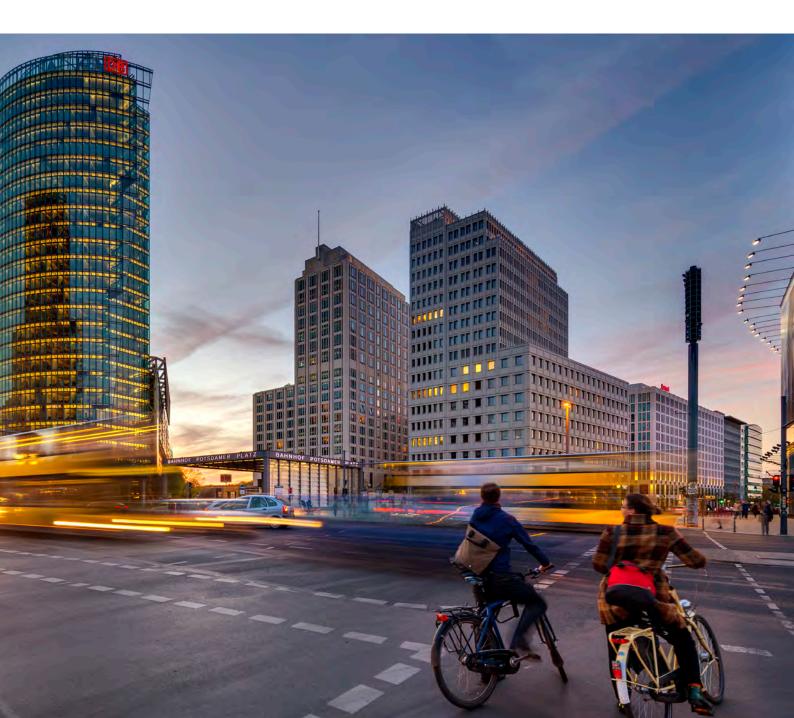
INRIX Top 25 Most Congested Cities in the U.S.

2019 Congestion Rank (2018)	URBAN AREA	HOURS LOST IN CONGESTION	2018- 2019 CHANGE	2017- 2018 Change	INCIDENT IMPACT	COST PER DRIVER	TOTAL COST PER CITY	BIKE	TRANSIT	LAST MILE SPEED (MPH)
1 (1)	Boston, MA	149	-5%	3%		\$2,205	\$4.1B	A		12
2 (3)	Chicago, IL	145	4%	0%	-	\$2,146	\$7.6B	<u>A</u>		11
3 (5)	Philadelphia, PA	142	4%	5%		\$2,102	\$4.5B	3		10
4 (2)	New York City, NY	140	-4%	-3%		\$2,072	\$11B	3 6		11
5 (3)	Washington DC	124	-11%	4%		\$1,835	\$4.1B	36		10
6 (7)	Los Angeles, CA	103	4%	-8%		\$1,524	\$8.2B	3 76		16
7 (6)	San Francisco, CA	97	-8%	-4%		\$1,436	\$3B	3 6		10
8 (9)	Portland, OR	89	10%	-7%		\$1,317	\$1.2B	3 6		14
9 (11)	Baltimore, MD	84	5%	9%		\$1,243	\$1.3B	3 6		10
10 (12)	Atlanta, GA	82	9%	-3%		\$1,214	\$3.0B	AFC		12
11 (8)	Houston, TX	81	-9%	4%		\$1,199	\$3.7B	AP		15
11 (9)	Miami, FL	81	0%	1%		\$1,199	\$3.5B	370	P	15
13 (14)	New Orleans, LA	79	10%	3%	- <u>-</u>	\$1,169	\$500M	3 6		12
14 (12)	Seattle, WA	74	-1%	7%		\$1,095	\$1.8B	36		13
14 (15)	Stamford, CT	74	6%	4%		\$1,095	\$500M	36		13
16 (16)	Providence, RI	70	9%	-6%		\$1,036	\$800M	3		17
16 (17)	San Diego, CA	70	9%	8%	- <u>`</u>	\$1,036	\$1.4B	ATC.		13
18 (18)	Austin, TX	69	13%	-5%		\$1,021	\$1.0B	36		16
19 (19)	Sacramento, CA	64	7%	8%		\$947	\$800M	36		14
20 (20)	Dallas, TX	63	13%	7%		\$932	\$2.9B	<u>AP</u>		15
20 (20)	Denver, CO	63	13%	9%		\$932	\$1.4B	36		10
22 (22)	Hartford, CT	61	3%	3%		\$903	\$500M	36		14
23 (24)	Minneapolis, MN	52	16%	7%	(- <u>`</u>	\$770	\$1.1B	3 76		13
24 (26)	Charlotte, NC	49	14%	2%		\$725	\$600M	36		15
25 (25)	San Juan, PR	46	5%	-5%	(-` `	\$681	\$400M	Ale		16

Top 10 Worst US Corridors

Los Angeles has three of the Top 10 most congested corridors in the country, followed by New York City and Chicago with two apiece. Surprisingly, Boston, Philadelphia, and Washington, D.C. do not have any corridors in the Top 10, despite placing in the Top 5 for congestion nationally. It is attributable to congestion being more evenly distributed across their metros, instead of concentrated on a few major Interstates.

INRIX Top 10 Worst Corridors in the U.S.


RANK	СІТҮ	ROAD NAME	FROM	то	DAILY DELAY (MINUTES)	YEARLY DELAY (HOURS)
1	Los Angeles	I-5	I-10	I-605	20	80
2	Los Angeles	US-101	CA-134	CA-110	19	76
3	New York City	Brooklyn Queens Expressway	Brooklyn-Battery Tunnel	I-495	17	68
4	New York City	I-95	Bruckner Expressway	George Washington Bridge	16	64
5	Atlanta	I-85/I-75	T. Mathis Parkway	College Park	16	64
6	Austin	I-35	West Slaughter Lane	East Dean Keaton Street	16	64
7	Tampa Bay	I-275	St. Petersburg	North Tampa Street	15	60
8	Chicago	I-290	I-294	I-90	14	56
9	Los Angeles	I-405	US-101	I-105	14	56
10	Chicago	I-90/I-94	I-294	I-290	13	52

Europe

European cities place amongst the slowest globally due to the vast majority of their growth occurring prior to widespread adoption of the automobile. Dense cores, narrow roads and complex road networks makes these cities ill-suited for car-based mobility. Rome leads European cities with drivers spending 166 hours per year in congestion, followed by Paris, Dublin, and Saint Petersburg where drivers lose 165, 154, and 151 hours per year due to congestion respectively.

12

Luckily for the residents of most European cities, robust public transport networks and viable biking and walking routes offer appealing alternatives to vehicles. Paris in particular is undergoing a revolution in transportation with massive investments in biking, scooter and public transport throughout the metro region.

INRIX Top 25 Most Congested Cities in Europe

2019 IMPACT RANK (2018 IMPACT)	URBAN AREA	COUNTRY	HOURS LOST IN CONGESTION (RANK 2019)	2018-2019 CHANGE	2017- 2018 CHANGE	BIKE	TRANSIT	LAST MILE SPEED (MPH)
1 (3)	Rome	Italy	166 (1)	1%	1%	Ab		11
2 (2)	Paris	France	165 (2)	-4%	-1%	Ab.		10
3 (1)	London	United Kingdom	149 (5)	-9%	1%	AP.		10
4 (5)	Saint Petersburg	Russia	151 (4)	3%	3%	Ab.		14
5 (4)	Dublin	Ireland	154 (3)	-4%	1%	Ab		10
6 (6)	Moscow	Russia	128 (9)	-2%	2%	ALC.		15
7 (7)	Brussels	Belgium	140 (6)	-7%	-5%	AP.		9
8 (9)	Palermo	Italy	137 (7)	5%	-4%	Ab.		8
9 (8)	Lisboa	Portugal	136 (8)	-9%	9%	A.		10
10 (10)	Turin	Italy	123 (10)	1%	4%	A		9
11 (12)	Athens	Greece	107 (12)	-6%	12%	AP.		14
12 (19)	Nizhny Novgorod	Russia	102 (15)	12%	-11%	3to		12
13 (11)	Belfast	United Kingdom	112 (11)	-8%	-6%	370		11
14 (20)	Milan	Italy	98 (16)	9%	0%	Ale		13
15 (16)	Lyon	France	105 (13)	1%	4%	376		10
16 (13)	Bristol	United Kingdom	103 (14)	-8%	8%	A.C.		13
17 (14)	Budapest	Hungary	92 (20)	-6%	10%	ALC.		15
18 (18)	Edinburgh	United Kingdom	98 (16)	-4%	-6%	Ale		10
19 (15)	Krasnodar	Russia	94 (18)	-10%	12%	APP	Fil	15
20 (21)	München	Germany	87 (22)	-1%	-4%	Ab.		11
21 (23)	Barcelona	Spain	78 (30)	1%	-6%	36		12
22 (17)	Manchester	United Kingdom	92 (20)	-10%	-4%	3		14
23 (29)	Rostov-on-Don	Russia	84 (24)	6%	-9%	36		13
24 (32)	Lille	Belgium	93 (19)	11%	8%	36		11
25 (26)	Samara	Russia	80 (27)	-2%	-11%	AL.		12

The United Kingdom

The U.K. congestion landscape differs significantly from that experienced by U.S. drivers. Most U.K. cities predate the automobile by centuries, and feature denser, less car friendly urban cores as a result. This, coupled with much earlier industrialization, resulted in railcentric alternatives. The fact Transport for London operates underground lines older than 150 years speaks to a very different history of growth when compared to the U.S. While the U.K. did pursue major roadworks and expansion of motorways in the post-war period, hundreds of years of development is not easily undone, which is reflected in much greater time loss values than in the U.S. and slower last mile travel speeds.

Furthermore, the age of the U.K.'s cities appears in high biking scores. Many of these cities settlement patterns even predate rail, making them well suited to walking and biking. Only London shows high levels of delays due to incidents in the UK. It is likely attributable to its highly complex road network and high congestion levels. On average, drivers in the U.K. lost 115 hours due to congestion in 2019, costing the country £6.9 billion or £894 per driver (\$8.9 billion; \$1,162 per driver).

INRIX Top 10 Most Congested Cities in the United Kingdom

2019 Congestion Rank (2018)	URBAN AREA	HOURS LOST IN CONGESTION	2018- 2019 CHANGE	2017- 2018 Change	INCIDENT IMPACT	COST OF PER DRIVER	COST PER CITY	LAST MILE SPEED (MPH)	BIKE	TRANSIT
1 (1)	London	149	-9%	1%	(- <u></u>	£1,162	£4.9B	10	AP	
2 (2)	Belfast	112	-8%	-6%		£874	£117M	11	A.C.	
3 (3)	Bristol	103	-8%	8%	(-ize)	£803	£207M	13	AL.	
4 (4)	Edinburgh	98	-4%	-6%	-	£764	£177M	10	AC.	
5 (4)	Manchester	92	-10%	-4%	(- the second se	£718	£176M	14	AF.	
6 (8)	Cardiff	87	5%	-5%	-	£679	£109M	11	- AB	
7 (7)	Birmingham	80	-5%	6%	(-ize)	£624	£325M	16	AL.	
8 (8)	Southampton	79	-5%	6%	-	£616	£74M	13	<u>AP</u>	
9 (6)	Nottingham	78	-17%	4%	-	£608	£84M	12	A.	
10 (10)	Hull	75	3%	-9%	<u>-</u>	£585	£90M	15	<u>AP</u>	

*Average hourly wage per capita, not household, was used in calculating the cost of congestion

Most Congested Corridors in the United Kingdom

Congestion in London outpaces the rest of the U.K. with the three worst corridors in terms of time lost. The A404/A501 from Edgware Road to Old Street is the most impacted roadway, where drivers lose up to 11 minutes per day on average during peak hours.

INRIX Top 5 in London

RANK	ROAD NAME	FROM	то	DAILY DELAY (MINUTES)	YEARLY DELAY (HOURS)
1	A404/A501	Edgware Road	Old Street	11	44
2	A4	Chiswick High Road	Piccadilly Circus	10	40
3	M25	A307	M40	9	36
4	A2	New Cross Gate	Vauxhall	7	28
5	A202	A2	A203	6	24

INRIX Top 10 Outside of London

RANK	СІТҮ	ROAD NAME	FROM	то	DAILY DELAY (MINUTES)	YEARLY DELAY (HOURS)
1	Birmingham	A38	Northfield	Lancaster Circus	8	32
2	Bournemouth	Bournemouth A338 Hurn Road St. Paul's Road		8	32	
3	Edinburgh	A90/A902	M90	A901	7	28
4	Leeds	M62	A1(M)	M621	6	24
5	Birmingham	M5	M6	A38	6	24
6	Manchester	A5103	M60	Mancunian Way	6	24
7	Liverpool	A5047	M62	A580	6	24
8	Edinburgh	A702	A720	A700	5	20
9	Manchester	A56	A560	M60	5	20
10	Manchester	A663	A627	A62	4	16

Germany



Munich, Berlin, and Dusseldorf top the list as the most congested German cities with motorists losing 87, 66, and 50 hours lost to traffic annually. Congestion imposes the greatest costs on Munich's drivers at up to \notin 774 per year. On a national level, Germans lost an average of 46 hours due to congestion in 2019, costing the country \notin 2.8 billion or \notin 408 per driver (\$3.1 billion; \$412 per driver).

INRIX Top 10 Most Congested Cities in Germany

2019 CONGESTION RANK (2018)	URBAN AREA	HOURS LOST IN CONGESTION	2018-2019 CHANGE	2017- 2018 CHANGE	INCIDENT IMPACT	COST OF PER DRIVER	COST PER CITY	LAST MILE SPEED (MPH)	BIKE	TRANSIT
1 (1)	München	87	-1%	-4%	<u>(-</u>	€ 774	€405M	11	A Contraction	
2 (2)	Berlin	66	0%	-6%		€ 587	€792M	13	A.	(Pa)
3 (4)	Dusseldorf	50	11%	-2%		€ 445	€98M	17	A.	
4 (3)	Hamburg	48	-10%	0%		€ 427	€280M	16	AFC.	
5 (4)	Stuttgart	42	-7%	-5%		€ 374	€85M	18	A.	
5 (6)	Nuremberg	42	-5%	-4%		€ 374	€69M	15	AND	
7 (7)	Cologne	41	-2%	5%		€ 365	€140M	17	A.	
8 (9)	Hanover	40	8%	6%		€ 356	€68M	18	3 76	
9 (10)	Bremen	37	6%	-8%	<u>-</u>	€ 329	€64M	14	A.	
10 (8)	Frankfurt	36	-5%	6%		€ 320	€86M	17	3	(Pa)

*Average hourly wage per capita, not household, was used in calculating the cost of congestion

Top 10 Worst German Corridors

Germany exhibits significantly lower time loss on its corridors than the U.S. or the U.K. Berlin exhibits greater delays than other major cities in Germany with the B96 from Tempelhof to Hallesches topping the list at 28 hours lost per year.

RANK	СІТҮ	ROAD NAME	FROM	то	DAILY DELAY (MINUTES)	YEARLY DELAY (HOURS)
1	Berlin	B2	Seeburger Chaussee	Hofjägerallee	9	36
2	Berlin	B96	L76/B96	Tempelhofer Ufer	8	32
3	Berlin	A100	A113	Beusselstraße	7	28
4	Munich	B2	Lortzingstraße	Martin-Greif-Straße	6	24
5	Munich	B2/B2R	A96	A9	6	24
6	Hamburg	Luruper Straße/B431/B4	Rugenbarg	Neuer Kamp	6	24
7	Hamburg	B447/B5/Ring 2	Borsteler Chaussee	Königstraße	5	20
8	Munich	Dachauer Straße	Pelkovenstraße	Nymphenburger Straße	5	20
9	Stuttgart	B10	L1204	Pragstraße	5	20
10	Frankfurt	B3/B8	A66/Kreuz 21 Frankfurt am Main- Miquelallee	Grusonstraße	4	16

INRIX Top 10 Worst Corridors in Germany

NORTH AMERICA 10210 NE Points Drive

10210 NE Points Suite 400 Kirkland WA 98033 United States

+1 425-284-3800 info@inrix.com EMEA

Station House Stamford New Road Altrincham Cheshire WA14 1EP England

+44 161 927 3600 europe@inrix.com

