FHWA Highway Statistics VM-1 Data Procedure FHWA-PL-11-031

Travel Monitoring and Surveys Division
Office of Highway Policy Information
Federal Highway Administration
1200 New Jersey Avenue, SE
Washington, DC 20590

Originally Developed - August 2011
Updated - March 2019

This document is intended to provide the procedures and steps used in the development of the FHWA Highway Statistics VM-1 publication. The document has 4 components as defined below.

Component 1: Approaches to Compute National VMT by Roadway Functional Class Group and Vehicle Types

Component 2: Reconciling National Vehicle Registration Data Based on Axle Spacing and Tire Arrangements

Component 3: Vehicle Occupancy Factor Computation

Component 4: Fuel Efficiency Modeling

Component 1

Approaches to Compute National VMT by Roadway Functional

 Class Groups and Vehicle Types
Background

Prior to the 2009 Highway Statistics, vehicle miles traveled (VMT) related data elements in table VM-1 were based on a modeling procedure with initial inputs from the Highway Performance and Monitoring System (HPMS) data and constrictions established from the Vehicle Inventory and Use Survey (VIUS) data. It has been noticed that VMT by vehicle type and roadway functional class data under this historical procedure were drifting away from what is being reported through the HPMS system. When the original historical modeling method was developed (early 1990s), the modeling logic was necessary due to potential field traffic data quality issues and the availability of the Vehicle Inventory and Use Survey (VIUS) data. However, with the advancement in traffic data collection instruments, implementation of institutionalized processes and procedures by State highway agencies in data collection, practical experience gained in traffic data collection, and the discontinuation of the VIUS (the last one was carried out in 2002), the original modeling method is deemed no longer appropriate. In addition, to reflect rapid changes in economic conditions, and goods movement and passenger travel pattern changes, the reported data from State highway agencies without being further modeled will be more logical and timely.

The proposed new procedure retires the original methodology (used for 2008 and prior years) and applies to all post-2008 VM-1s.

New Method

Step 1

Obtain both VM-4 and VM-2 data from the HPMS system (sample attached). These data should have already passed the HPMS's data quality review.

Step 2

A: Conduct independent data quality review on both datasets in areas of growth rate and percent (\%) changes from past years by using growth trend data from both the HPMS and the Travel Monitoring and Analysis System (TMAS system). 5% or higher changes from past year shall serve as an indicator that more in-depth analysis shall be conducted to determine data quality concerns.

B: Both roadway centerline and lane lengths by functional classes shall be reviewed, compared, and contrasted with the VMT data at the State level geography. If issues are identified, inquiries to responsible State highway agencies shall be made in coordination through the HPMS division.

C: Attempts must be made to secure missing values from State highway agencies first. When such an attempt is determined to be not feasible for timeliness, a simple arithmetic average for the parameter from neighboring Counties or States can be used in place of the missing value. However, the actual value shall be obtained from State highway agencies within 6 months from issue discovery and appropriate modification shall be made to any published data accordingly to data release schedules.

Step 3

For a given State, once the VM-4 and VM-2 data have passed the data quality check, the VM-2 data can be split further by multiplying all corresponding cells from the corresponding VM-4.

Final VMT by the five roadway functional classes (rural interstate, other rural arterial, other rural, urban interstate and other urban) and six vehicle classes (light-duty vehicle - Short Wheelbase, motorcycles, buses, light-duty vehicle Long Wheelbase, single unit truck, and combination truck) can be computed by simply aggregating the multiplication results.

Step 4

Once data from all States and the District of Columbia are processed through Step 3, a simple addition of all corresponding VMT categories for all States will deliver the national VMT by roadway functional class and vehicle types

Step 5

Before publishing the VM-1 VMT data, coordinate with the HPMS division ensuring VM-1 is consistent with VM-1 and VM-3.
Sample VM-2 Data Table from HPMS

Sample VM-4 Data

STATE	\|NTERSTATE SYSTEM							OTHER ARTERALS							OTHER						
	Motor-	PASSENGER	LGнt		SINGEE.UNTT	consmation		MOTOR.	ASSEV源	LGHT		SIISLE:UNIT	conemation		MOTOR.	PASSENGER	46		SIISLEEUNIT	comenation	
	Croles	Cars	trucks	buses	trucks	trucks	total	crales	cars	trucks	buses	trucks	trucks	total	Crales	cars	trucks	euses	trucks	trucks	тотN
${ }^{\text {Alabamm }}$ Al	${ }^{0.6}$	${ }_{56,3}^{581}$																			
	-0, 0			$\begin{aligned} & 0.2 \\ & 0.0 \\ & 0.0 \end{aligned}$	\%,	$\begin{gathered} { }^{28} 28 \\ 330 \end{gathered}$	$\begin{aligned} & 1009 \\ & +100 \\ & \hline \end{aligned}$	- 30	$\begin{aligned} & 55.25 \\ & 550.0 \\ & 570 \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 8.97 \\ & \begin{array}{c} 807 \\ 200 \end{array} \end{aligned}$	$\begin{gathered} 0.8 \\ 100 \\ 100 \end{gathered}$	$\begin{aligned} & 10000 \\ & 1000 \\ & t \end{aligned}$	$\begin{aligned} & 0.1 \\ & 23 \end{aligned}$	$\begin{aligned} & 6.101 \\ & 580 \mid \\ & 5880 \end{aligned}$	$\begin{aligned} & 322329 \\ & \left.\begin{array}{l} 330 \end{array}\right) \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.8 \\ & 0.0 \end{aligned}$		5	(1000
Cantoris	0.4											${ }_{4}^{42}$	\% ${ }_{\substack{50 \\ \hline 80}}$		${ }_{20}^{22}$						
	\%	${ }_{73,1}^{700}$	190 145	-	20,	88.4	1000 1008	10 10	${ }_{77.0}^{67}$	$\begin{aligned} & 200 \\ & 20.1 \\ & 20.1 \end{aligned}$	0.1	$\begin{aligned} & 20 \\ & 3.20 \\ & 3 \end{aligned}$	$\begin{aligned} & 30 \\ & 2.7 \end{aligned}$	100	20 1.4	$\begin{aligned} & 510 \\ & 748 \end{aligned}$	$\begin{gathered} 300 \\ 200 \\ 20 \end{gathered}$	10 0.0	40 20	4.8 0.8	1010 1000
Deluare															0						
Fione					4.1	13.1							7.1		0.7	${ }^{60,8}$	28.		${ }^{4.5}$	55	1000
$cSeargia Hawei$	O. 0.5	$\xrightarrow{96.1}$	167	07	30 26	10.1		0.5 0.8	${ }_{623}^{67.1}$	225	${ }_{0.5}^{0.5}$	${ }_{22}^{40}$	5, ${ }_{1}$	9909	90,	${ }^{689}$	$\underset{250}{23}$	${ }_{0.3}^{0.5}$	4, ${ }_{1.4}$		1001 1000
Itato	${ }_{0}^{0.4}$	${ }^{33,5}$	${ }^{28,}$			29.5	${ }^{1000}$		45.3	402	${ }^{0.4}$	${ }^{72}$	8	1009	${ }^{0.9}$		410	0	${ }^{6} 70$		
	0.7	${ }_{496}^{617}$	${ }^{8.5}$	${ }_{10}^{10}$	(3,	${ }_{30,5}^{24}$	${ }_{1000}^{1008}$	${ }_{0.8}^{0.7}$	${ }_{59,4}^{79.4}$	${ }^{727}$	${ }^{0.6}$	${ }_{4.2}^{3.8}$	${ }_{12,5}^{7.9}$	${ }_{100.0}^{100.0}$	${ }_{10}^{0.9}$	${ }_{658}^{828}$	[528	1.0 0.4	退,		(1000
lowe	0.5	494			22				56				140								
Kaneas		${ }_{5}^{500}$	19.0	0	${ }^{30}$	22.	1008			${ }^{250}$											
				0.8	$\begin{aligned} & 2.5 \\ & 8.0 \\ & 80 \end{aligned}$	21.5	1008	1.1	${ }_{542}^{64,2}$	${ }_{225}^{212}$	0.9	$\begin{gathered} 5.6 \\ 7.8 \end{gathered}$	$\begin{gathered} 7.0 \\ 10.0 \end{gathered}$	${ }_{10000}^{1000}$	1.0		${ }_{28,}^{23,}$	-9	5.4 68	${ }_{67}^{3,3}$	1999
Mane	${ }_{0} 0$	${ }_{66,1} 5$																			
	$\stackrel{0}{1,7}$							${ }_{0}^{0.7}$				${ }_{2}^{3,}$			${ }_{10}^{04}$		${ }_{123}^{223}$	${ }^{0.8}$	${ }_{3}^{59}$		
Mixitign	0	${ }_{688} 68$	${ }^{18.8}$	0	${ }^{125}$	10.8	1009	1.1	659,	${ }^{23.1}$	0.3	${ }_{25}^{25}$	7.	1000	1.6	${ }_{68} 68$	258	0.0	1.4	24	1000
Mesestipod	${ }_{0} 0$											4.4					${ }_{264}$	${ }^{06}$			
Misooni		527	156	07		271	1000	0.5	800	242	0.5	44	10.4	1000	03		286	${ }_{0} 3$	${ }^{46}$	61	1000
	0.6				${ }_{22}^{29}$	${ }^{18,}$		1.6 0.6		(30.1	0.6 0.1	3.2 29						0.6			
Nevada	0.1														0.4		${ }^{28}$				
Jesee	1.1 0.1	${ }_{722}^{60}$	${ }_{16,2}^{310}$	${ }_{0}^{0.4}$	4,	8.1	${ }_{1000}^{100}$	${ }_{02}^{20}$	${ }_{79}^{68,6}$	${ }_{1}^{21.0}$	${ }_{0.3}^{20,}$	${ }_{26}^{50}$	${ }_{24}^{30}$	${ }^{100.0} 10$	20 0.3	${ }_{697}^{660}$	${ }_{25,3}^{23 .}$	0	${ }_{2}^{50}$		1000
New Mexco	60					24.3				${ }^{286}$		126				543		1.5	8.4		
NewYoki								${ }_{10}^{0.7}$		${ }_{180}^{203}$		29 50	${ }_{80}^{50}$		${ }^{0.8}$	cioc			${ }^{36}$		$\underset{1000}{1000}$
Natrin Dakta	3.	${ }_{5}^{457}$	${ }_{12,4}$		${ }^{6.8}$	17.1	1009	${ }^{19}$	40.5	${ }^{31,6}$	1.4	${ }_{6}^{6.8}$	14.1			${ }_{23}^{44}$	37.3	0.9	${ }^{67}$	8.1	1000
Oremoma 3	0	440	20.														${ }^{320}$	1.0	${ }^{8.0}$	${ }^{80}$	
${ }^{\text {Preaban }}$	${ }_{1,5}^{0.5}$	${ }_{481}^{459}$	(124	-0.	-3.75	${ }_{20}^{25,5}$	1000 1000	1.0 0.9	${ }_{5}^{51,4}$	180 ${ }_{18}^{320}$	-08	8.8 18.6	80.	$10.0 \mid$	${ }_{0}^{0.9}$	${ }_{48,}^{507}$		0.0	${ }_{17,1}^{7,1}$	5, ${ }_{5}^{28}$	$\begin{array}{r}1000 \\ 1001 \\ \hline\end{array}$
Rnodel lsand	,	60.4	26												0.6						
Sout canire															${ }_{20}^{0.6}$			0, 0			
Temesse	1.12	S50,	16.2		3.7	${ }_{20,4}^{20.4}$	${ }^{1009}$	${ }^{1.6}$	${ }_{650}^{640}$	${ }^{22,3}$	0.1	2.9	5.15	1000	0.4	${ }_{20}^{721}$	232	0.1	1.9	1.3	100.0
										${ }_{223}$	${ }_{0} 0$	${ }_{12,3}$	15.4		0.6	${ }_{50,1}$		1.2	14.0		
vemont	0.8	${ }^{683}$	15.3	1.4	4.	98	1009	1.7	68.4	${ }^{222}$	1.0	5.2	3.5	1000	1.4	${ }_{66}^{66}$	25.	0.7	4.9	1.3	100.
(ligna	${ }_{0.3}^{0.3}$	-	${ }_{24,}^{15.4}$	0,	$1{ }_{5}^{1.6}$	${ }_{125}^{7,0}$	${ }_{1000}^{1000}$	0.5 0.5	${ }_{5}^{20,9}$	22,	${ }_{0.3}^{0.6}$	${ }_{7}^{1,8}$	(5,	$\underset{\substack{1000 \\ 1000}}{ }$	${ }_{1.6}^{0.6}$	${ }_{567}$	${ }_{31.2}^{24 .}$	0	\% ${ }_{7}^{21}$	${ }_{23}^{1.7}$	
Weetivinia	${ }_{0}^{0.3}$								${ }_{640}^{663}$										${ }^{46}$		
Whaning	0.3 0.5	${ }_{796}^{334}$	- 80	${ }^{0.5}$	19818	[32	1000	0.4		${ }_{426}^{206}$. 0.5	${ }_{4}^{23}$	${ }_{8}^{8.7}$	1000	0.5		50,	${ }_{0}^{0.5}$	${ }^{5,1}$	82	1000
Peeto Rico																					

Component 2

Reconciling National Vehicle Registration Data Based on Axle Spacing and Tire Arrangements

Background

HPMS VMT by vehicle type data collected by State highway agencies are based on FHWA's 13 vehicle classification system (axle spacing, tire arrangement, and the number of axles criteria). However, vehicle registration data with State motor vehicle departments vary pending State registration laws and regulations. For similar vehicles, different State motor vehicle departments may register them under different vehicle types. Prior to 2009, the reconciliation of state vehicle registration data with the FHWA's classification was primarily based on the Vehicle Inventory and Use Survey (VIUS) data. However, the discontinuation of the VIUS after the 2002 edition hampered the continued use of such information.

The Policy Information Office has adopted the IHS Polk Vehicle Registration data to develop converting factors in place of the historical VIUS data. The IHS Polk data offers both the wheel-based specification (used for FHWA's 13 vehicle classification) and body type information.

Method

The IHS Polk method utilizes the Polk Vehicle Registration's axle spacing (wheelbase), body type, and gross vehicle weight rating (GVWR) data to establish vehicle split percentage data for Light-Duty Vehicle - Short Wheelbase, Light-Duty Vehicle - Long Wheelbase, Single Unit Truck and Combination Truck. This Polk derived percentage data are then applied to State supplied registered vehicle data to obtain the final counts of each of the four vehicle types.

Step 1

Obtain numbers of vehicles for both the "Light-duty Vehicles Short Wheelbase" and the "Light-duty Vehicles - Long Wheelbase" vehicles from the Polk Car (both Domestic and Import) Database
"Light-duty Vehicles - Short Wheelbase" are defined as all light-duty vehicles with a wheelbase (axle spacing) less than or equal to 121 inches; The "LightDuty Vehicles - Long Wheelbase" vehicles are defined as all light-duty vehicles having an axle spacing greater than 121 inches.

Step 2

Obtain numbers of vehicles for both the "Light-duty Vehicles Short Wheelbase" and the "Light-duty Vehicles - Long Wheelbase" vehicles from the Polk Light Truck Database

The Light Truck Database includes vehicles with GVWR up to 13,000 lbs. It covers body types ranging from the pickup, van, sport utility vehicle (SUV), to other light-duty commercial vehicles.

Vehicles contained in the Polk Light Truck Database with a wheel base less than or equal to 121 inches are all counted as "Light-duty Vehicles - Short Wheelbase;" Vehicles with a wheelbase greater than 121 inches are counted as "Light-duty Vehicles - long wheel" vehicles.

Step 3

Obtain "Single Unit Truck" and "Combination Truck" Counts from the Polk Heavy Truck Database

Polk's Heavy Truck Database contains trucks with GVWR greater than 10,000 lbs. It is further divided into subgroups based on both body type and GVWR information (see Table below for example). The subgroup "Class 3" vehicle in the database overlaps with the Light Truck "Class 3". Consequently "Class 3" in the Light Truck database is removed from being considered as light trucks.

Combination trucks are these registered as "Tractors" and the remaining ones are considered as "Single Unit Trucks."

Step 4

Compute the Percentage Split Data among "Light-Duty Vehicles Short Wheelbase", "Light-Duty Vehicles - Long Wheelbase", "Single Unit Truck" and "Combination Truck"

Sum up all vehicle counts data obtained from Steps 1, 2 and 3; and compute percentages of each vehicle types accordingly.

Step 5

Obtain Bus and Motorcycle Data

Bus and motorcycle data are obtained directly from MV-1.

Step 6

Obtain Final Vehicle Counts Data for All Six Vehicle

Types

Use Bus and Motorcycle data directly from Step 5
Multiply the percentage data obtained in Step 4 with the difference between MV-1 total and motorcycle and bus combined to obtain final counts for the remaining four types of vehicles.

End of Component 2

Component 3

Vehicle Occupancy Factor Computation

Background

Vehicle occupancy factors (OF) are used to convert vehicle miles traveled (VMT) to person miles traveled (PMT) through a simple equation of VMT $=$ Of \times VMT. The steps described below enable the computation of vehicle occupancy factors needed for the FHWA Office of Highway Policy Information Highway Statistics Series Annual VM-1 PMT production. The procedure described here is applicable to post 2008 FHWA Highway Statistics (HS) VM-1s.

Vehicle occupancy factors used for the single unit truck and combination truck are 1.000. The bus uses an occupancy factor of 21.200 .

Occupancy factors for passenger vehicle-short wheelbase, passenger vehicle-long wheelbase, and motorcycle rely on information derived from the National Household Travel Survey (NHTS). Since the NHTS data is based on vehicle body types ((Car, Van, Sport Utility Vehicle (SUV), Pickup, Other (other truck and Recreational Vehicle (RV)) vs. the axle arrangement criteria used in VM-1, conversions are needed to transform the NHTS information to a VM-1 compatible form.

For motorcycle occupancy factor, VM-1 uses the information directly from the NHTS without further adjustment given the axle arrangement and body type matches.

Occupancy factors for VM-1's passenger vehicle-short wheelbase and passenger vehicle-long wheelbase vehicles are obtained by splitting each of the NHTS Car, Van, SUV, Pickup, Other (other truck and RV) vehicle type into long wheelbase and short wheelbase by using the IHS Polk vehicle registration data for the data year.

The overall underlying principles are: (a) the latest NHTS vehicle occupancy factors by vehicle types remain constant - meaning the travel behavior per vehicle type does not change, and (b) fleet composition (short and long wheelbase \%), as revealed by Polk data, changes as time changes.

Computation Steps (Using the 2009 NHTS and 2009 HIS Polk to Illustrate the Technical Steps)

Step 1: Calculate baseline vehicle occupancy factors by vehicle type from the 2009 NHTS

Table 1. Baseline Occupancy Factors Calculated Directly from the 2009 NHTS.

Vehicle Type	PMT	VMT	VOF (Vehicle Occupancy Factor)
Car	$1,828,613,444,953$	$1,182,999,145,905$	1.546
OTH	$46,927,873,966$	$38,541,943,102$	1.218
PCP	$511,775,053,212$	$344,427,266,543$	1.486
SUV	$886,541,396,186$	$467,216,433,196$	1.897
Van	$472,120,490,878$	$200,498,165,969$	2.355

The results in Table 1 match the NHTS vehicle occupancy publication at: https://nhts.ornl.gov/tables09/fatcat/2009/avo_TRPTRANS_WHYTRP1S.html

Step 2: Compute Short WB and Long WB percentages for each vehicle type categorized in Step 1 (Motorcycle excluded)

In this step, registered vehicles in IHS Polk data are divided into Long WB and Short WB for each of the 5 vehicle groups per the 2009 NHTS vehicle types (Car, Van, SUV, Pickup, Other (other truck and RV)). Vehicle types are determined first by the variable "Body_Style". If this variable cannot clarify, then variables "Make" and "Model" are further checked with the help of Google search (images).

To control the IHS Polk data quality, entries where "wheelbase" is missing or unknown, or "Body Style" is missing or unknown are excluded.

The results of this step (Using the IHS 2009 Polk Vehicle Registration Data as an example) are listed in Table 3 below.

Table 2. Percentage of Short WB and Long WB Vehicles from Polk Data (2009).

	Polk Data						
Vehicle Type	Short WB	Long WB	Total	\% Short	\% Long	Total	
Car	120676503	996111	121672614	99.18%	0.82%	1	
OTH	76704	386626	463330	16.55%	83.45%	1	
PCP	7940287	41452109	49392396	16.08%	83.92%	1	
SUV	47774099	4696709	52470808	91.05%	8.95%	1	
Van	16338392	5032936	21371328	76.45%	23.55%	1	

Step 3: Use the Short WB and Long WB percentages in Step 2 to split NHTS-based PMT and VMT

Table 3. Split NHTS PMT and VMT into Short WB and Long WB based on Polk Data.

	Allocate NHTS PMT and VMT to Short WB and Long WB			
Vehicle Type	PMT*\% Short	PMT*\% Long	VMT*\% Short	VMT*\% Long
Car	$1,813,642,927,698.77$	$14,970,517,254.32$	$1,173,314,152,515.48$	$9,684,993,389.11$
OTH	$7,768,881,023.59$	$39,158,992,942.02$	$6,380,595,264.08$	$32,161,347,838.07$
PCP	$82,272,599,246.66$	$429,502,453,964.94$	$55,369,886,226.57$	$289,057,380,316.54$
SUV	$807,186,282,112.63$	$79,355,114,072.90$	$425,395,471,972.24$	$41,820,961,223.60$
Van	$360,936,374,716.21$	$111,184,116,161.41$	$153,280,958,061.54$	$47,217,207,907.75$

Step 4: Calculate Occupancy Factors for both SWB and LWB VM-1 Vehicle Groups

 (Using 2009 data as an example to illustrate the process)Sum all PMT and VMT for Short WB in Table 3 respectively. Occupancy factors for Short WB is 1.6936.

Sum all PMT and VMT for Long WB respectively. Occupancy for Long WB is 1.6054. Table 4 summarizes of final occupancy factors used to update 2009-2016 VM-1.

Table 4. Final Vehicle Occupancy Factor to Update VM-1.

Final Vehicle Occupancy Factor to Update VM-1			
Year	Light-duty Short WB	Light-duty Long WB	Motorcycle (directly from NHTS 2009 by PMT/VMT)
2009	1.69363043363849	1.60539162528379	1.160418590841
2010	1.69320244137584	1.60821716025690	1.160418590841
2011	1.69302398147565	1.60943714233317	1.160418590841
2012	1.69206481503303	1.61446758967126	1.160418590841
2013	1.69093911313107	1.62019820493870	1.160418590841
2014	1.69009653620133	1.62436146200579	1.160418590841
2015	1.68931488184394	1.62818660049146	1.160418590841
2016	1.68804406157679	1.63420751661132	1.160418590841

2017 VM-1 Light-duty Short WB, Light-duty Long WB, Motorcycle Occupancy Factors

Table 5. 2017 Baseline Occupancy Factors Calculated from the 2017 NHTS.

Veh_Type	PMT	VMT	VOF (Vehicle Occupancy Factor)
Car	$1,695,490,736,997$	$1,103,124,117,266$	1.53699
OTH	$33,208,049,522$	$15,589,389,355$	2.13017
PCP	$438,002,024,459$	$293,659,547,216$	1.49153
SUV	$990,874,499,471$	$540,469,138,342$	1.83336
Van	$350,189,051,335$	$143,666,713,710$	2.43751
zMC			1.20449

Table 6. 2017A Percentage of Short WB and Long WB Vehicles from Polk Data (2009).

	Polk Data					
Vehicle Type	Short WB	Long WB	Total	$\%$ Short	$\%$ Long	Total
Car	$113,934,361$	961,863	$114,896,224$	99.16%	0.84%	1
OTH	48,785	343,046	391,831	12.45%	87.55%	1
PCP	$4,724,871$	$45,891,713$	$50,616,584$	9.33%	90.67%	1
SUV	$70,980,796$	$4,998,840$	$75,979,636$	93.42%	6.58%	1
Van	$10,667,358$	$6,648,424$	$17,315,782$	61.60%	38.40%	1

Table 7. 2017B Split NHTS PMT and VMT into Short WB and Long WB based on Polk Data.

	Allocate NHTS PMT and VMT to Short WB and Long WB			
Vehicle Type	PMT*\% Short	PMT*\% Long	VMT*\% Short	VMT*\% Long
Car	$1,681,296,799,633$	$14,193,937,364$	$1,093,889,224,805$	$9,234,892,461$
OTH	$4,134,575,100$	$29,073,474,422$	$1,940,960,158$	$13,648,429,197$

PCP	$40,885,869,803$	$397,116,154,656$	$27,412,033,149$	$266,247,514,067$
SUV	$925,683,043,658$	$65,191,455,812$	$504,910,679,658$	$35,558,458,684$
Van	$215,733,368,454$	$134,455,682,881$	$88,505,634,214$	$55,161,079,496$

Table 8. 2017c Split NHTS PMT and VMT into Short WB and Long WB based on Polk Data.

Vehicle Type	\sum (PMT)	\sum (VMT)	\sum (PMT)/ \sum (VMT) (Occupancy Factor)
Short Wheelbase	$3,661,412,954,110$	$2,191,764,138,284$	1.6705
Long Wheelbase	$1,108,622,877,627$	$657,954,081,275$	1.6850
MC (directly from 2017 NHTS)			

Vehicle Occupancy Factors Used in VM-1

The above computed 1.6705, 1.6850, and 1.2944 values are used to convert the 2017 VMT to 2017 PMT (personal miles traveled) for the Short Wheelbase, Long Wheelbase, and Motorcycle vehicle groups.

Note:

The assumption is that VMTs generated by a given vehicle type (Car, Van, SUV, Pickup, Other (other truck and RV) for its two subcategories - long wheeled based and short wheelbase vehicles are the same. For example, a long wheelbase car and a short wheelbase car would travel the same distance because both are under the vehicle type "car."

Component 4

Fuel Efficiency Modeling - Vehicle Stock Model and Reconciliation Model for Fuel Economy (MPG)

Background

Vehicle Stock Models utilize historical data to establish fuel economy of different vehicle categories. The Reconciliation Model utilizes optimization techniques to further enhance the stock models and ensures that fuel consumptions match VMT, total fuel consumed, and continuity from previous years in VM-1 table. The sensitivity analysis shows that the sensitivities of the model are within reasonable ranges and solutions are stable.

The vehicle stock models (Sheets: "Light-duty Vehicle - Short Wheelbase", "Lightduty Vehicle - Long Wheelbase", "Motorcycle", "Bus", and "Truck") are used to estimate preliminary fuel consumption and fuel efficiency by vehicle type. Vehicle stock models use various data sources of different agencies and organizations to estimate the fleet fuel efficiency. Organizations and agencies publish their data once every 1 to 5 years. Here is a summary of updating procedures of vehicle stock models.

Light-duty Vehicle - Short Wheelbase and Light-duty Vehicle - Long Wheelbase share the same data source. EPA annually publishes MPG data by model year for cars and light trucks in Light-duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends: 1975-20091. The vehicle population data is from Polk's National Vehicle Population Profile, and this data is available annually. The VMT data is from the NHTS (National Household Travel Survey) program ${ }^{2}$,

[^0]and it is only available for 2001 and 2009. The VMT data for years other than 2001 and 2009 is estimated using linear interpolation of 2001 and 2009. This method will be used for future updating when the NHTS is not available.

The stock model for buses is divided into three categories: transit bus, school bus, and motor coach. The data for transit buses is obtained from the American Public Transit Association's Transit Fact Book, Appendix A3. Specifically, the sources are as follows: VMT - from Table 6, population - from Table 17, Fuel Type \% - from Table 26, Fuel consumed - from Table 32. VMT and population data for school buses is available from the School Bus Fleet website ${ }^{4}$ for 1999, 2002, 2003, 2004, 2005, and 2007. Missing VMT and population data is estimated using linear interpolation. MPG data for school buses is from the DOE report Economic Analysis of Alternative Fuel School Buses. This report gives MPG by type of school bus: type A, type C, type D. The School Bus Fleet website also gives data on the total number of school buses by type. This population data is used to find a weighted average of MPG for all school buses using the MPG data from the DOE report. Motor coach data is from the Motorcoach Census ${ }^{5}$ published in 2009, 2008, 2006, and 2005. For years, during which the Motorcoach Census is not published, the VMT, population, and fuel consumption data is estimated using linear interpolation of available years. All calculation methods are in excel files, and further explanation of the data estimating procedure is given in these excel files.

Motorcycles are divided into 5 categories based on the engine size. These engine size categories are defined as: $0-124 \mathrm{cc}, 125-349 \mathrm{cc}, 350-449 \mathrm{cc}, 450-749 \mathrm{cc}$, and 750 cc or greater. The MPG data comes from the Total Motorcycle Fuel Economy Guide. VMT and population are from the NHTS. The motorcycle data from the NHTS should be handled the same as the Light-duty Vehicle - Short Wheelbase and Lightduty Vehicle - Long Wheelbase data from the NHTS.

All heavy truck data is from VIUS (Vehicle Inventory and Use Survey) ${ }^{67}$. The file includes both 2002 and 2007 data. The missing data is estimated using linear interpolation of these two years. For data by fuel type, fuel type 01 is gasoline and fuel types 02-15 are included in special fuels.

Some of data sources require a fee or membership to download. Updating the stock model requires approximately 40 FTE (full time equivalent). All models can be updated every year if new data is available.

The Reconciliation Model

[^1]The VMT and MPG reconciliation model (Sheet "VM-1") uses the results of the Vehicle Stock Model and data from Table VM-1 of the previous year, and VMT data from HPMS for the current year to provide fuel efficiency estimates for the current year. The VMT and MPG reconciliation model is implemented using the Excel Solver. The output is fuel efficiency estimates for the current year. The fuel consumed is calculated using VMT data of VM-1 for the current year and the fuel efficiency estimates (MPG, output of this model) for the current year.

The Excel Solver is set up to minimize the deviations of fuel efficiency from the previous year's estimates (published in Table VM-1) and from the results of the vehicle stock model. The model is subject to the constraint that fuel consumption estimates must sum to the current year's fuel consumption. The model comes with current year as 2008 and previous year 2007.

The input parameters include results of vehicle stock model (green cells), light green represents output from stock model, and is considered as recommended value. The total fuel consumed from table MF-21 (orange cells) is also an important parameter. The reconciliation model (MPG estimates) is highly sensitive to stock model results. Therefore, it is important to have a set of well-estimated fuel efficiency data from stock model for each vehicle category. Another set of important parameters are MPG from the previous year from MV-1 table.

Other data in VM-1 table may not have effects on MPG, however, they affect the total fuel consumed. These data are total VMT for each vehicle category.

The optima solver is programmed into two buttons: solve and reset.
The solve button will start optima procedure, a message pops up to show if a solution has been found. It is possible that a solution cannot be achieved after thousands of iterations. This indicates that the model is not set up properly. The reset button turns the numbers back to its original values.

Sample of Stock Model for 2008

Vehicle Stock Model

Light-duty Vehicle - Short Wheelbase

Gasoline					
Model year	Pop_yf	VMT_yf total (miles)	VMT_y per vehicle (miles)	MPG_yf	Fuel consumption_y ftotal (gallons)
2008/2009	8,771,846	100,861,110,872	11,498	21.8	4,634,581,102
2007	11,148,222	143,287,030,261	12,853	24.0	5,958,919,031
2006	11,206,791	146,351,496,759	13,059	23.2	6,299,539,012
2005	11,460,983	136,591,662,040	11,918	23.3	5,863,562,291
2004	10,829,564	120,437,203,952	11,121	22.7	5,296,929,122
2003	10,642,021	117,111,550,267	11,005	22.8	5,135,299,290

2002	$10,958,497$	$117,957,872,865$	10,764	22.6	$5,227,127,200$
2001	$10,450,060$	$109,938,511,016$	10,520	23.0	$4,770,475,801$
2000	$11,337,902$	$109,536,437,535$	9,661	22.7	$4,816,660,305$
1999	$10,202,527$	$94,423,734,106$	9,255	22.5	$4,191,970,766$
1998	$9,429,798$	$84,397,020,771$	8,950	22.9	$3,679,269,375$
1997	$8,929,375$	$74,913,181,283$	8,390	23.0	$3,252,677,671$
1996	$7,877,145$	$67,037,047,046$	8,510	23.2	$2,889,667,779$
1995	$8,427,365$	$63,782,928,635$	7,569	23.1	$2,762,952,029$
1994	$7,117,556$	$50,626,719,126$	7,113	22.6	$2,235,731,649$
1993	$6,344,347$	$45,573,192,604$	7,183	23.3	$1,958,798,935$
1992	$5,362,405$	$31,770,922,693$	5,925	22.8	$1,395,601,874$
1991	$4,845,331$	$32,265,308,218$	6,659	23.0	$1,402,289,920$
1990	$4,213,227$	$26,340,879,765$	6,252	23.0	$1,144,716,898$
1989	$3,852,916$	$21,236,197,413$	5,512	22.8	$930,897,789$
1988	$3,149,104$	$15,313,679,693$	4,863	23.0	$666,085,854$
1987	$2,589,966$	$13,360,375,059$	5,159	22.4	$595,175,924$
1986	$2,074,771$	$9,585,970,873$	4,620	22.6	$423,345,683$
1985	$1,424,693$	$6,263,573,316$	4,396	22.1	$283,552,890$
	$4,495,767$	$16,256,082,987$	3,616	19.4	$837,266,157$

Gasoline
Total VMT $\quad 1,755,219,689,15$
(miles)
4
Total MPG
22.9

Total fuel consumed (gallons)

76,653,094,347

Passenger Car Avg MPG

Total VMT (miles)
Total fuel consumed (gallons)
23.1

1,874,151,754,974
81,045,200,237

Motorcycle:
Vehicle Stock Model

under 125 cc					
Model year	Pop_ye	VMT_ye total (miles)	VMT_ye per vehicle (miles)	MPG_ye	Fuel consumption_yf total (gallons)
2008	7,018	$15,232,744$	2,171	96.7	157,526
2007	11,670	$22,478,517$	1,926	96.7	232,456
2006	27,224	$54,126,100$	1,988	90.0	601,401
2005	11,679	$22,757,072$	1,949	118.0	192,857
2004	15,103	$22,603,839$	1,497	118.0	191,558
2003	4,962	$7,124,068$	1,436	118.0	60,373
2002	3,383	$4,685,579$	1,385	118.0	39,708

2001	4,633	$35,822,283$	7,732	118.0	303,579
2000	6,065	$7,599,873$	1,253	118.0	64,406
1999	6,363	$12,303,852$	1,934	118.0	104,270
1998 and older	91,445	$209,884,285$	2,295	118.0	$1,778,680$

Total VMT
(miles) 414,618,213
Total MPG
Total fuel consumed
(gallons) 3,726,814

Bus
Vehicle Stock Model

Gasoline	Pop_f	VMT_f	Fuel consumption_f	MPG_f
Bus Type	18,748	$186,186,656$	--	6.36
School	333	$11,882,500$	$3,800,000$	3.13
Transit	0	--	--	--
Motorcoach				

Gasoline
Total VMT 198,069,156
Total MPG
6.4

Total fuel consumed 31,162,927

Bus Avg MPG
Total VMT (miles)
Total fuel consumed (gallons)
7.228834388

8,161,851,889
1,129,068,872

Light-duty Vehicle - Long Wheelbase

Vehicle Stock Model

Light Duty Vehicle - Long Wheelbase

Gasoline									
Model year	Pop_yf		VMT_y per vehicle					MPG_yf	Fuel consumption_yf total (gallons)
$2009 / 2010$	490,823	$8,302,028,293$	16,915	16.4	$505,327,709$				
2008	$1,511,046$	$26,278,102,301$	17,391	15.7	$1,672,092,713$				
2007	$1,761,843$	$25,542,058,580$	14,497	17.2	$1,484,628,535$				
2006	$2,016,145$	$26,364,317,770$	13,077	17.1	$1,544,572,231$				
2005	$2,237,680$	$29,096,652,482$	13,003	16.4	$1,779,342,429$				
2004	$2,538,051$	$30,195,311,434$	11,897	16.4	$1,844,410,599$				

2003	$2,393,927$	$29,936,950,005$	12,505	16.5	$1,814,131,970$
2002	$2,182,686$	$22,721,579,335$	10,410	16.6	$1,370,538,837$
2001	$2,350,926$	$23,971,717,596$	10,197	16.9	$1,422,135,543$
2000	$2,089,451$	$21,203,154,187$	10,148	17.1	$1,241,054,159$
1999	$1,980,056$	$17,447,818,511$	8,812	16.3	$1,072,052,576$
1998	$1,643,877$	$12,522,781,257$	7,618	16.8	$743,199,765$
1997	$1,766,682$	$13,565,469,463$	7,679	17.0	$798,195,697$
1996	$1,266,492$	$8,586,436,595$	6,780	16.9	$508,184,509$
1995	$1,397,928$	$9,559,176,040$	6,838	16.6	$575,274,294$
1994	$1,306,538$	$7,731,254,647$	5,917	16.7	$463,079,121$
1993	918,145	$6,576,242,724$	7,163	16.6	$396,209,297$
1992	757,934	$3,722,535,200$	4,911	16.5	$226,081,455$
1991	599,113	$3,496,336,014$	5,836	16.8	$207,824,583$
1990	695,995	$4,127,957,751$	5,931	16.5	$250,774,030$
1989	709,058	$3,055,978,447$	4,310	16.3	$187,776,510$
1988	622,462	$2,329,741,301$	3,743	17.1	$136,406,666$
1987	372,340	$1,222,623,990$	3,284	16.5	$74,185,195$
1986	454,184	$1,555,326,044$	3,424	16.7	$93,405,649$
$2,479,40,149$					

Gasoline
Total VMT 344,940,985,907
Total MPG
16.6

Total fuel
consumed
20,790,294,221

Light Truck Avg MPG
Total VMT (miles)
Total fuel consumed (gallons)
17.2

433,434,710,727
25,246,547,879

Vehicle Stock Model					
Heavy Truck					
Single-unit 2-axle 6-tire or more					
Gasoline					
Model year	Pop_yf	VMT_y pe	VMT_yf total (MPG_yf	Fuel Consume
2007/2008	2,764	36,928	102,085,200	6.3	16,286,520
2006	6,177	40,487	250,080,230	6.4	39,306,469
2005	8,385	37,195	311,871,413	6.3	49,340,173
2004	9,560	36,025	344,405,971	6.5	52,919,404
2003	4,498	33,464	150,536,243	6.1	24,514,714
2002	6,841	23,318	159,517,266	6.1	25,947,254
2001	4,661	22,026	102,664,600	5.8	17,854,110
2000	5,797	19,970	115,754,544	6.4	18,046,486
1999	6,503	15,287	99,410,777	6.5	15,212,964
1998	2,731	15,522	42,397,690	6.5	6,538,403
1997	1,432	12,809	18,343,310	6.7	2,755,583
1996	1,607	13,864	22,276,582	6.2	3,583,907
1995	1,152	12,811	14,763,692	6.3	2,334,666
1994	2,089	10,850	22,662,040	5.9	3,865,289
1993	1,309	10,551	13,812,309	5.6	2,452,773
1992	1,678	9,549	16,025,371	5.6	2,859,634
1991 and older	126,140	4,748	598,907,187	5.8	103,819,094

Gasoline

Total VMT	$2,385,514,425$
Total MPG	6.15
Total fuel consumed	$387,637,442$

Single-unit truck Avg MPG 7.369322

Combination					
Model year	Pop_yf	VMT_y pe\|	VMT_yf total (MPG_yf	Fuel Consume
2007/2008	0	54,365	0	5.1	0
2006	2	57,661	124,933	4.9	25,248
2005	29	52,652	1,507,563	5.0	302,473
2004	29	42,875	1,227,602	5.0	246,695
2003	0	37,609	0	4.9	0
2002	409	32,816	13,406,138	4.9	2,722,992
2001	261	27,451	7,173,932	4.9	1,468,632
2000	29	25,305	724,550	5.0	145,859
1999	235	20,699	4,865,452	5.0	982,686
1998	0	19,079	0	4.9	0
1997	29	16,108	461,204	4.9	94,925
1996	59	13,486	801,503	5.0	159,413
1995	29	11,046	316,279	4.9	63,978
1994	200	11,263	2,252,369	4.9	458,004
1993	888	9,735	8,641,055	4.9	1,768,137
1992	109	10,396	1,135,546	4.7	239,231
1991 and older	8,884	6,134	54,492,812	4.9	11,046,741

Gasoline	
Total VMT	$97,130,939$
Total MPG	4.92
Total fuel consumed	$19,725,013$

Heavy Truck

Vehicle Stock Model
Heavy
Truck

Single-unit 2-axle 6-tire or more					
Gasoline					
Model year	Pop_yf	VMT_y per truck (miles)	VMT_yf total (miles)	MPG_yf	Fuel Consumed_yf total (gallons)
2007/2008	2,764	36,928	102,085,200	6.3	16,286,520
2006	6,177	40,487	250,080,230	6.4	39,306,469
2005	8,385	37,195	311,871,413	6.3	49,340,173
2004	9,560	36,025	344,405,971	6.5	52,919,404
2003	4,498	33,464	150,536,243	6.1	24,514,714
2002	6,841	23,318	159,517,266	6.1	25,947,254
2001	4,661	22,026	102,664,600	5.8	17,854,110
2000	5,797	19,970	115,754,544	6.4	18,046,486
1999	6,503	15,287	99,410,777	6.5	15,212,964
1998	2,731	15,522	42,397,690	6.5	6,538,403
1997	1,432	12,809	18,343,310	6.7	2,755,583
1996	1,607	13,864	22,276,582	6.2	3,583,907
1995	1,152	12,811	14,763,692	6.3	2,334,666
1994	2,089	10,850	22,662,040	5.9	3,865,289
1993	1,309	10,551	13,812,309	5.6	2,452,773
1992	1,678	9,549	16,025,371	5.6	2,859,634
1991 and older	126,140	4,748	598,907,187	5.8	103,819,094

Gasoline
Total VMT 2,385,514,425
Total MPG
6.15

Total fuel
consumed 387,637,442

Single-unit truck Avg
MPG
7.369322

Combination					
Gasoline					
Model year	Pop_yf	VMT_y per truck (miles)	VMT_yf total (miles)	MPG_yf	Fuel Consumed_yf total (gallons)
2007/2008	0	54,365	0	5.1	0
2006	2	57,661	124,933	4.9	25,248
2005	29	52,652	1,507,563	5.0	302,473
2004	29	42,875	1,227,602	5.0	246,695

2003	0	37,609	0	4.9	0
2002	409	32,816	$13,406,138$	4.9	$2,722,992$
2001	261	27,451	$7,173,932$	4.9	$1,468,632$
2000	29	25,305	724,550	5.0	145,859
1999	235	20,699	$4,865,452$	5.0	982,686
1998	0	19,079	0	4.9	0
1997	29	16,108	461,204	4.9	94,925
1996	59	13,486	801,503	5.0	159,413
1995	29	11,046	316,279	4.9	63,978
1994	200	11,263	$2,252,369$	4.9	458,004
1993	888	9,735	$8,641,055$	4.9	$1,768,137$
1992	109	10,396	$1,135,546$	4.7	239,231
1991 and					
older	8,884	6,134	$54,492,812$	4.9	$11,046,741$

Gasoline
Total VMT 97,130,939
Total MPG 4.92
Total fuel consumed

19,725,013

Combination truck Avg MPG 5.955711

Reconciliation Model

End of Component 4

[^0]: ${ }^{1}$ More information and data can be found at http://www.epa.gov/otaq/fetrends.htm.
 ${ }^{2}$ More information on National Household Transportation Survey can be found at http://nhts.ornl.gov/ or http://www.bts.gov/programs/national household travel survey/ or http://www.fhwa.dot.gov/policy/ohpi/nhts/index.cfm.

[^1]: ${ }^{3}$ An electronic copy of the annual Transit Fact Book can be found at
 http://www.apta.com/resources/statistics/Pages/transitstats.aspx.
 ${ }^{4}$ More information can be found at http://www.schoolbusfleet.com/.
 ${ }^{5}$ More information can be found at http://www.buses.org/foundationresearch.
 ${ }^{6}$ Electronic copies of the Vehicle Inventory and Use Survey results by survey year can be found at http://www.census.gov/svsd/www/vius/products.html.
 ${ }^{7}$ Estimation of 2007 VIUS Variables, Battelle Memorial Institute, Columbus Ohio, October 2009.

